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Zusammenfassung

Das Erstellen von Hysteresis-Kurven gehört zu den wichtigsten Techniken um Magnete zu
charakterisieren. Hysteresis Kurven werden auch BH-Kurven oder Schleifen genannt weil
diese den Zusammenhang zwischen den äuÿeren anliegenden Feld (H) und der resultie-
renten Flussdichte (B) zeigen. Das äuÿere anliegende Feld (H) ist vergleichbar mit einem
elektrischen Strom bzw. ist es ein vielfaches von dem was durch einen Leiter �ieÿt. Das
anliegende Feld induziert ein Magnetfeld in einem Material. Die Stärke des entstandenen
Magnetfeldes variert von Material zu Material was wiederum zu verschiedenen Hystereis-
Kurven führt. Diese BH - Kurven geben die Möglichkeit um magnetisches Material zu un-
terscheiden, welches sich in ihren Zusammensetzungen variiert. Diese Unterschiede sollten
es möglich machen jeden Supermagnet und jeweilige Materialkombination zu identi�zieren.
Mit der Hilfe von Hysteresis - Kurven kann man auch die Eigenschaften von Supermagne-
ten verbessern, diese Supermagnete oder auch Nano Composite Magnete sind immer aus
einer hartmagnetischen und weichmagnetischen Phase wobei der weichmagnetische Anteil
aus α − Fe und der hartmagnetische Anteil aus Nd2Fe14B besteht. Einige Simulationen
haben bereits gezeigt, dass der Ein�uss des hartmagnetischen Anteils gleich bleibt selbst
wenn sich das jeweilige Volumen stark verändert, im Gegensatz dazu hat das Volumen
der weichmagnetischen Phase auf das Verhalten von Supermagneten einen groÿen Ein�uss.
Das Hauptproblem von Simulationen mit �niten Elementen ist, dass es sehr viele Ressour-
cen benötigt, daher ist es fast unmöglich für jede Materialkombination eine Berechnung
zu machen, jedoch kann man aus verschiedenen Berechnungen den jeweiligen Verlauf zei-
gen und so Rückschlüsse auf das Verhalten machen. Diese Arbeit soll zeigen, dass mit
verschiedenen Materialkombinationen bestehend aus verschiedene Geometrien und Volu-
mensverhältnissen der weich und hartmagnetischen Phase auch verschiedene Hysteresis
- Kurven entstehen können. Der Hauptteil dieser Arbeit beschränkt sich auf die Erfor-
schung der Auswirkung der Volumen von hart und weichmagnetischen Materialien auf die
BH-Kurven, und ob neben den Volumen auch Geometrie, Korngröÿen eine Rollen spielen
welche zu verschiedenen Hysteresis Kurven führen können. In dieser Arbeit wird ebenfalls
gezeigt wie sich die Korngröÿe der weichmagnetische Phase und der jeweiligen Geometrie
von Supermagneten auf die Hysteresis Kurven auswirkt.
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Abstract

Hysteresis-loops are one of the most important technique of magneto static characteriza-
tion. In a lot of scientist works hysteresis-loops are also called BH-curves or loops, because
they show the correlation between the external magnetic �eld (H) and the associated �ux
density(B). The external �eld(H) is similar to the current which �ows around the mate-
rial into a conductor where as the resulted �ux density(B) is like the magnetic �eld. The
inducted �ux density vary from material to material which leads to di�erent BH-curves.
Those hysteresis loops give the possibility to di�er magnetic materials at some properties.
It's more like a �ngerprint of every tie which gives every magnets distinct features shown in
charts. These features di�er in some ways which should make it possible to identify com-
binations of magneto static materials by this way. These loops are just more than simple
characterization tools, at nano-composite magnets where the most common materials are
α−Fe / Nd2Fe14B and FeCo / Nd2Fe14B. BH-loops reveals some possibilities to optimize
the behaviour of those super-magnets, because di�erent geometrical shapes and material
properties leads to di�erent distinct features. Nano-composite magnets always consist of
two phases in di�erent alignments where the soft phase is α−Fe / FeCo and hard phase is
Nd2Fe14B. Some Simulations show that there is a connection between the volume of the
hard and the soft phase, the e�ect of the hard shape is nearly almost the same but if the
volume of the soft shape vary there is a big in�uence on the magneto static behaviour and
moreover on the response BH-loops. The main problem with computing �nite elements is,
that it takes a lot of time to compute such curves, it's nearly impossible to compute every
material composition. One way is to do some time consuming computation on many core
systems and calculate these curves on big server clusters. This study should show that
is suitable to di�er several material combination with di�erent properties like geometry,
grain size, soft and hard magnetic content which lead to di�erent curves. The main part
of this study is to do di�erent simulations to prove if there is a corresponding between the
total volume of α−Fe /Nd2Fe14B and FeCo / Nd2Fe14B or beside of the total volume also
geometry, grain size about the soft magnetic material are same important which results to
di�erent hysteresis loops. At this work there are di�erent simulations to show the in�uence
of the grain size and geometry of the soft phase.
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Chapter 1

Introduction

1.1 Characterization of super magnets

Super-magnets are applied at many scopes, and have a big economic and technological
importance in di�erent areas of the industry, like automotive industry, wind energy, hy-
drodynamic power. The power of super magnets comes from special materials which are
also called noble earth. Those materials are really expensive and are of great politically
interest. According to these facts companies are really anxious to improve the behaviour
of those super magnets. One possibility is to increase the e�ectiveness which also leads
to decrease the dependence of noble earth and furthermore to decrease the total costs .
Super-magnets are also called nano composite magnets, they are applied at di�erent appli-
cations, the impact of increasing the e�ectiveness of super magnets would lead to a bigger
application spectrum. Those nano composite materials which are made of noble earth are
characterized by extreme performance data. They have the ability to bear a weight which
is 1000-times bigger than their own.[15][6][23]

Properties of nano-composite magnets

• Remanence MR up to 1.5 Tesla, is the residual magnetism without any external
�eld and external in�uence.

• Biggest maximum of energy product with BHmax = 512 kj/m3 , is the peak value
about how much energy is a magnet able to save.

• Saturation magnetisation of JS=1,61T, is the maximum reachable magnetism if
the magnetic �eld is fully aligned into on direction.

• Coercive field strength HC about 750kA/m, the value to change the direction of
the magnetic �eld into the opposite.

• Curie-temperature of TC=586K, below this point the magnet is not negatively in-
�uenced by the temperature above it is.

These presented value are peak values and depend on a lot of factors only a few of these
can be achieved. Magnets with high rating are able to achieve some peak values.[13][15]

2



CHAPTER 1. INTRODUCTION 3

Materials of nano-composite magnets

• Nd .. Neodymium

• Dy .. Dysprosium

• Pr .. Praseodymium

These materials are really expensive an in�uence the e�ectiveness of every nano-composite
magnet. Some studies show that the in�uence can be decreased with the awareness of the
geometry, better manufacturing process, alloys and improvement of the grain boundaries.
The goal of making super-magnet must be to use as less as possible of rare earth material
but to be still powerful with less temperature dependency. The goal must be to explore
much more powerful material combinations as well applying new principles of making
nano-composite magnets but some material combinations are already established. At the
moment super magnets where materials of neodymium, iron and boron are used are in
focus because these material combination are cost e�ective but still powerful.

1.2 De�nition of rare earth

The de�nition of rare earth comes from the fact that those deposits of these minerals are
not exploitable commercially. Rare earth minerals or also called noble earth which are
located on the periodic table. Those minerals which are mainly used at high-tech industry
and clean energy. Noble earth elements are not really plenty on the earth crust's, but not
really uniform distributed over the world. One another fact is that 97 percent of rare earth
minerals come from China, so most of the companies which aren't in those countries with
well occurred sources want to weaken the dependency from other countries. Because of
none uniform distribution there are only several countries where rare earth occur. China
has one third of the total amount of rare earth over the whole world, other countries where
rare earth appear are in the north of America, Greenland, Mongolia and Australia.[6]

Global66Production66of
Rare66Earth66OxidesT
195066-662000

80

70

60

50

40

30

20

10

0
1950 1960 1970 1980 1990 2000

P
ro

d
uc

tio
nT

6k
t

Other

USA

China

Monazite-placer
era

Mountain6Pass6era Chinese
era ?

Total

Figure 1.1: Production of rare earth minerals over the world from 1960 to 2000 with the
greatest supplier of noble earth, this picture also shows that most of delivered noble earth
comes from China and the total amount of rare earth is still rising.[7]



Chapter 2

Material science of nano composite
magnets

2.1 Introduction to Nd2Fe14B/α− Fe - magnets

First of all we di�er between hard and soft magnetic materials. Super-magnets are always
made of some kind of noble earth, at most cases Neodymium(Nd) is used with a big
amount of Iron (Fe) and a small amount of Boron (B). This material combination is called
Nd-Fe-B magnets which is really stable and leads to really strong magnets. During the
activity of the manufacturing process always hard and soft magnetic phases arise. Soft
magnetic materials are really easy to magnetize, but they are not able to carry a lot
of magnetization energy, beside the facts of soft magnetic materials also hard magnetic
materials exist, hard magnetic materials are really hard to magnetize, but they are able to
carry a lot of magnetization energy. At Nd-Fe-B magnets, the hard magnetic part consists
of the material Neodymium (Nd) and the soft magnetic part is Iron (Fe),the material
Boron (B) is just used for the improvement of the grain boundaries and to stable these
combination of Neodymium and Iron. On the other side Boron (B) is really important
for decreasing the amorphous phase (none crystalline phase) which negatively in�uences
the behaviour of nano composite magnets. This composition is build up with about 60-70
percent Iron by 35-25 percent of Neodymium and only 5 percent Boron.[15][23][14] [27]

Hard magnetic phase (Nd2Fe14B): The material combination of Neodymium, Iron,
Boron, is just the base of powerful super magnets. These materials are also com-
bined with some alloys. Nevertheless during the manufacturing process hard mag-
netic phases arise. These phase consists of Neodymium, Iron, Boron but with the
distribution of 2:14:1 (Nd-Fe-B). The main properties of hard magnetic materi-
als are less residual magnetism power (MR, BR) but high coercive �eld strength
(HC).[29][23][15][17]

Soft magnetic phase (α− Fe): During the manufacturing process also soft magnetic
phases arise. This phase consists at most cases only of Iron (Fe) and Boron (Br).
Soft magnetic materials are easier to magnetize but they are not able to carry more
magnetization energy in di�erence to hard magnetic materials. The properties of soft
magnetic materials are high residual magnetism power (MR, BR) but less coercive

4
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�eld strength (HC).[29][23][15][17]
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Figure 2.1: Comparison of soft and hard magnetic materials with di�erent coercive forces
(HC's), the value of HC is one property of magneto static materials which is the main
feature to distinguish between hard and soft magnetic materials.[25]

2.2 The hysteresis loop and magnetic properties

2.2.1 Introduction

A lot of informations can be learned from hysteresis loops, hysteresis loops show the be-
haviour of every magnetic material, this graph is really important for material science and
related magnetic properties. Despite the fact that di�erent material combinations lead
to nearly same behaviours, hysteresis loops have signi�cant points which show the main
features of every magnetic material. Hysteresis loops are almost called BH-loops because
hysteresis loops show the relationship between the �ux density (B) and the magnetizing
force (H), so every �ux density (B) value has an corresponding magnetizing force (H) value.

2.2.2 Measuring the B-H loop

The loop is generated by changing the magnetic force (H) and measuring the �ux density
(B). First of all, all hysteresis loops start at the origin point, where the magnetizing force
is zero (H), if the ferromagnetic material has never been previously magnetized or has
been thoroughly demagnetized, all �ux density (B) values will follow the dashed line if the
magnetizing force (H) increases. At the saturation point "a", almost all magnetic domains
are aligned into the same direction, and it's not possible to increase the �ux density (B)
over this point. If the magnetizing force (H) is reduced to zero, the curve will move from
point "a" to point "b" this point is called the residual magnetism, some magnetic domains
are aligned but some have lost their alignment. If the magnetizing force is reversed, the
curve moves to point "c" this point is called the coercive force. The coercive force is the
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point where the �ux density is zero, it's just the force which is needed to �ip the direction of
all magnetic domains. On the other side of the x-axis there is the saturated point "d", it's
the same amount of �ux density (B) of point "a", but into the mirrored direction, this point
becomes active after increasing the magnetizing force into the negative direction. After
reducing the magnetizing force to zero the point "e" occurs, it's the residual magnetism
power into the other direction, nearly equal to point "b". Increasing the magnetizing force
(H) back in the positive direction will return the �ux density B to zero. Notice that the
curve did not return to the origin of the graph because some force is required to remove
the residual magnetism. The curve will take a di�erent path from point "f" back to the
saturation point where it completes the loop.[2][25]
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Magnetic Field Strengh xHD

Flux Density xBD

Figure 2.2: BH-loops of magneto-static materials which shows the main features of ev-
ery magnetic material, BH-loops are really import for materials science, many material
composition leads to distinct BH-loops, hysteresis loops are also important to distinguish
between hard and soft magnetic materials.[25][3]

Retentivity, MR: A measure of the residual �ux density corresponding to the saturation
induction of a magnetic material. In other words, it is a material's ability to retain
a certain amount of residual magnetic �eld when the magnetizing force is removed
after achieving saturation. (The value of B at point "b" on the hysteresis curve.)

Residual magnetism or residual �ux, MR, BR: The magnetic �ux density that re-
mains in a material when the magnetizing force is zero. Note that residual magnetism
BR and retentivity BR are the same when the material has been magnetized to the
saturation point. However, the level of residual magnetism may be lower than the
retentivity value when the magnetizing force did not reach the saturation level.

Coercive force, HC The amount of reverse magnetic �eld which must be applied to a
magnetic material to make the magnetic �ux density return to zero. (The value of
H at point "c" on the hysteresis curve.)
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Reluctance: Is the opposition that a ferromagnetic material shows to the establishment
of a magnetic �eld. Reluctance is analogous to the resistance in an electrical circuit.

Magnetizing force, (H): That part of the magnetic induction that is determined at any
point in space by the current density and displacement current at that point inde-
pendently of the magnetic or other physical properties of the surrounding medium.
The magnetizing force is a multiple of the current,where n is the number of coils and
l the length of the conductor. H = I ∗ n

l

Permeability, µ: Magnetic permeability is the distinguishing property of the matter,
every matter has a speci�c permeability . It's the relation between magnetizing force
(H) and �ux density (B). µ = B

H

Flux density, (B): Magnetic �ux density is the amount of magnetic �ux per unit area
of a section, perpendicular to the direction of �ux energy. B = µ ∗H

2.2.3 The maximum energy product (BH)(max)
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Figure 2.3: Calculation the (BH)(max) of soft magnetic materials and hard magnetic
materials the main features like the associated coercive force (HC) and the residual mag-
netism (MR) can lead to the same energy product ((BH)(max)).[4]

The maximum energy product (BH)(max) is one of the most important properties of
every super-magnet. It's just the ability to store magnetization energy. The (BH)(max) is
just maximum of the product magnetizing force (H) multiplied by the �ux density (B).
The maximum energy product is the area of the largest rectangle in the second quadrant of
the hysteresis-loop. A lot of applications require high (BH)(max) values, at most cases it's
not possible to reach this value, because of the cost of used materials, the manufacturing
process and the temperature addiction. For every single problem there is just a possible
solution but it a�ects other terms too. Just for example if u just want to decrease the
costs of super-magnets on possible solution might be to use more Iron but at the opposite
of this it leads to increase the temperature dependency too, to improve the temperature
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behaviour it's recommended to use some alloys. According to soft/hard magnetic the value
of (BH)(max) and it's strength of those materials relies on two properties. So the (BH)(max)

of soft magnetic material depends mainly on the coercive force (HC) on the opposite the
strength of hard magnetic materials is heavily in�uenced by the value of the residual �ux
(MR, BR). Just to mention if soft magnetic materials mainly rely on the coercive force
(MR) the residual magnetism must be high, so for hard magnetic materials the coercive
force (HC) must be high in comparison to the remanence (MR, BR) to achieve the same
(BH)(max). At �gure 2.3 and 2.4 the magnetic materials achieve the same (BH)(max) but
with di�erent properties, which leads to the next step of nano composite magnets, there
must be some possibilities to achieve the same (BH)(max) with the usage and combination
of those two kinds of materials. [23][27]

2.2.4 The goal of combination soft and hard magnetic materials

The goal of nano composite super magnets must be to use as much as Iron possible with less
dependency to temperature, but to accomplish a high maximum energy product (BH)(max)

. While decreasing the cost of nano composite magnets it's recommended to replace as
much as possible volume by Iron, which costs are less but in�uence the behaviour of hard
magnetic materials negatively. One goal of researches might be to �nd new ways to decrease
the e�ects of Iron on hard magnetic materials and also on the resulting BH-loops, there a
lot of possibilities which aren't �gured out yet to decrease the in�uence of Iron on nano-
composite magnets, like the grain boundaries or the alignment of iron in three dimensional
space. On another goal of nano-composite magnets might be to decrease the total weight
to use super magnets at much more applications, there a lot of problems and factors which
in�uence the behaviour of those magnets which means that the properties and material
combinations must be adapted in every single case.

Figure 2.4: The development of permanent magnets in the 20th Century.The value of
(BH)(max) has improved exponentially, doubling every 12 years. The material combination
of super magnets has changed from one generation to another, due the limitation of the
maximum reachable energy product (BH)(max).[2]



Chapter 3

Sphere packing problem

3.1 Sphere Packing, how to replace space by spheres

3.1.1 Cannonball problem

Figure 3.1: Cannon ball problem �gured
out by Thomas Harriot and Karl Gustav
Gauss([9]). It describes the problem how to
replace space by any geometric body. The
cannonball problem is the main issue of re-
placing space by any shape. There are always
some limitations about the maximum reach-
able dense.[1]

The problem of close packing spheres was
�rst �gured out by Thomas Harriot around
1587. At this case the problem was how to
transport as much as possible cannon balls
with a ship. The main issue is how to stack
as much as possible spheres together with-
out the need of too much space or to re-
place as much as possible space with any
geometry. Cannon balls are usually put to-
gether in a rectangular or triangular, both
arrangements produce a face to face orien-
tation. It's not feasible to �ll the volume of
a cubic with same spheres, because there
is always a gap between spheres. There
are some di�erent ways how to �ll a cube
with spheres but all alignments have the
same problem. There is a limitation for
the count of spheres and as follows for
the maximum reachable density with equal
sized spheres. Carl Friedrich Gauss([9])
mathematically proved that the highest av-
erage density of close packing spheres is
π

3
√
2
= 0.74048 , this result was con�rmed

by Thomas Hales([11],[12]). How to closely
pack spheres is really important for analysing structures which consists of any kind of
particles. It's possible to replace space by any given geometric shape, at this study there
are spheres used. There are lot of di�erent solutions how to replace space some are with
analytical and mathematical procedures, several may use methods with random numbers.
A lot of scientist have proved the maximum reachable dense with spheres.

9
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3.1.2 Simple, face-centred cubic packing (fcc) and hexagonal cubic pack-
ing (hcp)

There are three di�erent ways how to reach high density packed spheres. On way is called-
face centred cubic (fcc) alignment one another other way is hexagonal close packing
(hcp). Nevertheless each sphere has eight neighbours, for every sphere there is still a gap
to the neighbour(s), with the hcp and fcc packing method. At the method of simple cubic
packing spheres are aligned into a layer where each layer has the form of a quad which
are formed into a cube so the length into each direction is equal. Face-centred cubic
packing is similar to hexagonal cubic packing, those two alignments have the same
fraction of about P=0.7405, so approximately 74 percent of space is replaced by spheres.
Spheres which are aligned into a triangle are the base of face centred cubic packing,
this alignment is stacked up with other spheres to build a pyramid. The hexagonal cubic
packing is similar to face centred cubic packing but the base of this alignment is a quad,
the amount of spheres at each layer is decreasing until to one if the amount of layers
increase.

Figure 3.2: Comparison of simple, fcc and hcp lattice where each lattice is regular aligned
with di�erent shapes. At those alignments all spheres have equal sizes. Figure "a" shows
the alignment with simple cubic packing, this alignment achieves a dense of P=0.5224.
The base of simple cubic packing is quad at each layer, those layers are stacked to a cube
so all lengths are uniform. The next �gure ("b") illustrate packing spheres with face-
centred cubic packing. The �rst layer of it (fcc) is a triangle and those layers are stacked
to a pyramid. At the opposite a quad is used to shape the base of hexagonal packing
(hcp) each layer of this pyramid has less spheres than the layer above, it's �gure "c"
of these possible alignments. Both, face-centred cubic (fcc) and hexagonal cubic
packing (hcp) achieve the same dense of P=0.7405. [16]
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Figure 3.2 shows the simple,hcp and the fcc lattice. At the hcp matrix there are always
two layers where are all spheres are in the same position. On the other side all three layers
in the fcc stack are di�erent. The fcc stacking can be converted by translation of the
upper-most spheres. There is some di�erentiation how to pack spheres or any given body.

Regular packing - Particles are aligned to any kind of lattice.

Random packing - Particles are randomly packed together

3.1.3 Sphere packing and response density

At some simulations sphere packing is a big problem, because there are still some math-
ematically and geometrically limitations to the amount of reachable volume. So it's hard
to do some simulations with high dense packed spheres but it's even harder to this at
real. In simple cubic packing, each sphere is stacked directly on another sphere. We can
visualize each sphere being contained within an individual cube. So we can easily calculate
the e�ciency of these methods by calculating the fraction of those two volumes like the
spheres and the cube. So the density is given by calculating P with the volume of the cube
(VCube) and the spheres (VSpheres).

Figure 3.3: Simple cubic packing where each sphere is stacked directly on another
sphere. It's the easiest way to replace any given space by spheres which are aligned to
a grid, at this case the maximum reachable dense with equal spheres is P=0.5224.
Simple cubic packing is one possible to align spheres in three dimensional space. So to
calculate the dense of spheres one possible might be to split the space into smaller cubes
where each length of the cube is equal. It makes it now possible to calculate the dense of
one smaller cube with one single sphere in it. It's the same like to calculate the dense of
the whole space, each length of the smaller cube is two times r (l(=h=w)=2r).[16]

For simple sphere packing , the volume of sphere is given by the formula

VSpheres =
4

3
πr3 (3.1)

,where r is the radius of the sphere. The volume of the cube is given as

VCube = lwh (3.2)

or length(l) times width(w) times height(h). The dimensions of the cube are exactly equal
to the diameter, or twice the radius of the sphere, so we can calculate the volume of the
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cube (VCube). The Sphere in it hits the boundary at all edges of the cube.

VCube = lwh = (2r)(2r)(2r) (3.3)

We can therefore calculate the packing density (P) as

P =
VSpheres
VCube

= (
4

3
πr3)/8r3 =

1

6
π = 0.5224 (3.4)

, which is approximately P=0.5224 , so 52.24 percent of the cube are occupied by the
spheres with simple cube packing.

Figure 3.4: Face-centred cubic(fcc) packing, the cube contains eight 1/8 spheres and
six 1/2 spheres, which response to the same dense like hexagonal cubic packing (hcp)
with equal sized spheres, fcc and hcp leads to the highest dense (P=0.7405) of sphere
packing. The simplest way to construct face centred cubic packing is to align spheres to a
triangle, then put a single sphere on the top. The next step is to copy it and stack it on
the opposite of the �rst triangle. At the face centred cubic packing one sphere must be in
the middle of the cube, where each corner of it is in the origin of it's neighbours. It's also
possible to use several cubes but the dense of this alignment is not changed.[16]

Calculating the density of face-centred cubic packing is almost the same like for cal-
culating the density of simple sphere packing. First determine how many spheres �ll an
individual cube. So start with a group of 6 spheres which are aligned in an equilateral
triangle, now put a sphere in center of it. Make another group of 7 spheres with the same
formation but into the opposite direction. Now put each group back on back, a symmetri-
cal group appear, with eight 1/8 spheres in each corner and six 1/2 spheres. The volume
of all spheres is now calculated by the formula

VSphere = 8(1/8)(
4

3
πr3) + 6(1/2)(

4

3
πr3) = (1 + 3)(

4

3
πr3) = 16/3πr3 (3.5)

, where r is the radius of a single sphere. Now we can calculate the volume of the
cube, the diagonal length from one corner to another corner is 4r with appliance of the
Pythagorean theorem (c2 = a2 + b2,with c=4r from one corner to another). It leads to
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length=width=height=2r
√
2, each length of the cube must be equal.

16r2 = 8r2 + 8r2 (3.6)

16r2 = 2(4r2) + 2(4r2) (3.7)

(4r)2 = (
√
2(2r))2 + (

√
2(2r))2 (3.8)

So the volume of the cube (VCube) is calculated by the formula where each length is equal.

VCube = lwh = (2
√
2)3 (3.9)

Now it is possible to calculate the density (P) of face-centred cubic packing, it is still
the fraction of the volume by spheres divided by the volume of the cube. We can calculate
the packing density as

P = VSpheres/VCube =
16/3πr3

(2r
√
2)3

=
16
3 πr

3

23r3(
√
2)3

=
π

3
√
2
= 0.7405. (3.10)

In other words, with face-centred cubic packing the maximum of space which can
be occupied by spheres is 74.05 percent and 25.95 percent is unoccupied. Hexagonal
packing is similar to face-centred cubic packing as a result the maximum density is also
P=0.7405. The problem of sphere packing arise in di�erent tasks of science. According
to Kepler's conjecture (1611)([26]), proved by Thomas Hales (1998), the highest packing
density of mono-sized spheres in the 3-dim space is π

3
√
2
= 0.7405 with two di�erent sizes

the possible density is 1− (1− π√
18
)2 = 0.93265. Table 3.1 shows the methods and highest

reachable density with sphere packing. In applications, where nano particles are randomly
packed the density will be lower than regular packing with equal spheres. It is possible to
replace much more space by using multi sized spheres which allow higher possible fractions.
There also some di�erent types of packing randomly particles together there is a distinction
between random close and random loose packing. The procedure of random close packing
means that all particles touch another particle at the opposite of this procedure is random
loose packing which means that all particles are separated from each other.[11][12][9][16]

Random close packing -Shake the container after a random packing.

Random loose Packing -No shaking is given to the container.

Circle Packing

In two dimensional Euclidean space, the German mathematician Carl Friedrich Gauss([9])
�gured out that the regular arrangement of circles in a lattice with the highest density is
the hexagonal packing arrangement, in which the centres of the circles are arranged in a
hexagonal and each circle touches another sphere. Every circle is surrounded by 6 other
circles. The density of this arrangement is

π√
12
≈ 0.9069 (3.11)
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Sphere packing

In three dimensional Euclidean space, Carl Friedrich Gauss ([9]) �gured out that the reg-
ular arrangements of spheres with the highest density are two very similar arrangements
called cubic close packing (or face centred cubic (fcc)) and hexagonal close packing(hcp).
In both of these arrangements each sphere is surrounded by 12 other spheres, and both
arrangements have an average density of

π√
18
≈ 0.7408 (3.12)

Irregular Packing

When spheres are randomly added to a container and then compressed, they will generally
form what is known as an "irregular" or "jammed" packing con�guration when they can
be compressed no more. This irregular packing will generally have a density of about 64
percent. Recent research predicts analytically that it cannot exceed a density limit of 63.4
percent. This situation is unlike the case of one or two dimensions, where compressing a
collection of 1-dimensional or 2-dimensional spheres (i.e. line segments or disks) will yield
a regular packing.

Possible methods of packing spheres

This table 3.1 presents the most common methods of replacing space by spheres in 3d-
space, it's possible to replace much more space with using only two dimensional space, due
the fact that if the order of space is decreased also the complexity of the main problem
is decreased. There are a lot of other possibilities to replace space by any geometry body
�gured out by some scientist. The maximum (theoretically) reachable dense is decreasing
and most of them are not applicable, there might be some work to �nd the best grid for
nano composite materials and also the best shape which should replace the space. The
shape of nano particles could be an import factor which in�uences the behaviour of nano
composite magnets too.[28]

packing P P reference

loosest possible - 0.0555 Gardner(1966)

tetrahedral lattice π
√
3

16 0.3401 Hilbert and Cohn-Vossen (1999, pp. 48-50))
cubic lattice π

6 0.5236
hexagonal lattice π

3
√
3

0.6046

random - 0.6400 Jaeger and Nagel (1992)
cubic close packing π

3
√
2

0.7405 Steinhaus (1999, p. 202), Wells (1986, p. 29; 1991, p. 237)

hexagonal close packing π
3
√
2

0.7405 Steinhaus (1999, p. 202), Wells (1986, p. 29; 1991, p. 237)

Table 3.1: Possible methods of sphere packing and maximum reachable densities with equal
sizes in three dimensional space, �gured out and proved by several scientist.[28]



Chapter 4

Meshing and quality

4.1 Overview of meshing

Figure 4.1: Simple example of meshing,
each corner of those triangles is a note
which in�uence the accuracy a lot, more
notes lead to higher accuracy, meshing is
the main method to discretize any shape
of the real world to compute the model
with any �nite element method, the angle
of each corner is really import for the mesh
quality. Meshing is crucial for computing
�nite element methods with computer pro-
grams, it decides how long has the compu-
tation to be done and it's critical to the
accuracy of the �nished results. The dis-
tance from one note to next note of it is
de�ned as the mesh size.[24]

Finite element modelling is crucial to the ca-
pability to perform an engineering analysis
of a model using a computer. The equa-
tions needed to determine the behaviour of
an entire complex model are often so compli-
cated that it would be impractical to derive
or solve them. Meshing solves this problem by
breaking the complex model into an assembled
group of �nite elements like small intercon-
nected pieces. These elements in a �nite ele-
ment model often consist of geometric shapes
such as rectangles, triangles, and tetrahedra
which are all connected together to one group
that's called a mesh. One single mesh also has
connecting points to other meshes which are
also called nodes, and assigned material and
element properties. Those points are really
important because each note is computed into
a computer program or algorithm over some
time where the appropriate model belongs to
any mechanical or mathematical problem.

4.2 Meshing quality

Mesh quality is really critical for computing
�nite elements which in�uences the accuracy
and calculation time of every computer pro-
gram. Especially the mesh quality decides if
the �nite element program is able to compute
these simulations or not. The program which

15
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has the duty to compute the di�erential equa-
tion system is sometimes called a solver, because it solves the problem with any �nite
element method inside a computer program. The issue always consist of the geometry and
the generated equation system for di�erent appliance like to calculate the magnetic �eld,
mechanical analyses and other problems. In this study the solver has compute di�erential
equation systems which belongs to micro magnetic problems. It's possible to try di�erent
solver at the same mesh or to improve the quality. It can be improved in di�erent ways
like to use another algorithm or to use more computation elements, there is always a trade
o� because using a better meshing algorithm always means that it takes maybe some more
time than using other algorithm, it just depends on a lot of factors. It's recommended to
use better mesh quality if the system of �nite elements is really great. One another way to
�nd the best clustering is to use several algorithm with di�erent meshing parameters on
the same model. That's just what happens on chapter 6, the same model is used with only
one meshing algorithm but with di�erent parameters (like maxsize(step) and minsize(step)
of the mesh) just to �nd out if the results converge to the same values. If all calculated
values are nearly the same with other (better) parameters then there is no improvement of
this computation, so there is no need to use other algorithm (if the values are equal) with
di�erent solver or more points.

Kinds of solver

There are just two main methods of solver, one is able to solve the problem directly like
the Gaussian method the other one computes the equation system iterative. The Gaussian
method is able to solve the problem directly which also means that results have to converge
to decent values. On the other side the iterative method is only able to compute the model
one point after another point, which makes every computation really time exhausted. One
another aspect of iterative methods is, that the computed results don't have to converge
to any special value which leads at some models to no results, that's why the mesh quality
must be high enough to achieve any result or even better data's. It is possible to calculate
the mesh quality of every single point and visualize it, like with the program paraview.
At all simulations the algorithm NETGEN is used but with di�erent parameters like max
size(step) and min size(step) of the mesh. NETGEN is just an automatic 3d tetrahedral
(�gure 4.2 ) mesh generator which is used at several programs. The NETGEN algorithm
is one possible way to generate meshes from shapes.[10][20]

Direct solver -For small systems, the equation system is solved directly with some matrix
operations, really memory exhausted

Iterative solver -For great system, ever point has to be computed from one time step to
the next time step, really time exhausted

The accuracy of every computations strongly depends on the amount of calculation
elements, which are shown on tabular 4.2, higher accuracy of computation leads to more
calculation time because of higher amount of calculations elements, the computer system
has to calculate every note. The main sizes of all models and simulations in this work are
equal, length, width and height of the model(cube) are 100nm(100nmx100nmx100nm. At
tabular 4.2 the most important facts are summarized, just to the mention the geometry of
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the model slightly in�uences the amount of those calculation elements too. The number
of elements if triangle, tetrahedron or anything else is no guarantee for having high mesh
quality, because it's possible if the maximum step size of the mesh decreases also the mesh
quality gets poor due the used algorithm. It's common if the number of elements rises also
the accuracy of computations increases if the level of quality is nearly same.

Summary of di�erent mesh sizes, elements and computation time and response
accuracy.

No. MaxSize[nm] MinSize[nm] Elements Compute time Accuracy

sim1 4.5 0.5 ≈57k <1h really low
sim2 2.5 0.5 ≈270k <3h low
sim3 2.15 0.5 ≈340k <6h low
sim4 2.075 0.5 ≈362k <6h low
sim5 2.02 0.5 ≈664k <12h average
sim6 1.5 0.5 ≈1350k <1d-2d high
- 1.25 0.5 ≈2500k <3d really high
- 1.00 0.5 ≈4000k >6d really high

Table 4.1: In this table by far all import facts are summarized with all parameters, which
are changed during all simulations in chapter 6, 7 and chapter ??. This table also shows
the needed computation time and response accuracy. The simulation time increases if the
accuracy of the calculations improves, the real mesh sizes must be �gured out by several
computations with di�erent mesh parameters. The size of the used model is always the
same size, each length of the cube is 100nm long.

4.3 Calculation of the mesh quality

The mesh quality can have a serious impact on the computational analysis in terms of the
quality of the solution and computation time of the result. This aspect becomes especially
important if poorly conditioned problems, non-linear, and/or transient analysis or sti� sys-
tems are considered. To calculate the mesh quality of a model could be very useful because
it shows how far the mesh �ts to the problem and numeric solved solution. The quality of
the mesh is an indicator of the grade about the �nished solution. There are several ways
how to compute the quality of individual elements and how to quantify the overall quality
of a mesh. In the following text, three elementary criteria are narrate.

The �rst one evaluates the element quality with respect to the equilateral simplex (as
the best possible element). The triangular element (�gure 4.2) is used at di�erent mesh
algorithm, the quality is of a single element is expressed with formula as

q = f
A

a2 + b2 + c2
(4.1)
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where A is the area of the triangular and a, b, c are the length of it's side. The factor
f = 216 ∗ 31/2 is the normalizing factor which represents the best quality of an equilateral
triangular. Similar to this formula the quality of a single tetrahedron (�gure 4.2) element
is calculated. This formula

q = f1
V

A3/2 +B3/2 + C3/2 +D3/2
(4.2)

or the most appropriate (more sensitive to poor elements) form

q = f2
V

(( (A
2+B2+C2+D2)

4 )1/2)3/2
(4.3)

presents the quality of an single tetrahedron element, where V respects the total volume
of the tetrahedron and A, B, C, D the areas of its faces. The factor f1 = 181/2 ∗ 271/4 and
f2 = 3

2∗
271/4

21/2
are still the normalizing factor to the best quality of an equilateral tetrahedron

which quality is equal to 1. The normalizing or form factor f can be calculated by comparing
equilateral and general triangle same like tetrahedron. All forms of equations are naturally
based on the volume ratio of areas(volumes) of circles(spheres) inscribed and circumscribed
to a triangle (tetrahedron). The total mesh quality is measured by summarizing the quality
of every single mesh of each element (at this case of every triangular and tetrahedron).
There are just two possibilities ways how to calculate the total mesh quality.
The standard form

Qa =
1

N

N∑
i=1

qi (4.4)

or as the harmonic mean by

Qh = N/

N∑
i=1

1

qi
(4.5)

where N stands for the number of elements (of a particular type) and q for the mesh quality
of each element with the index i and Q is the resulted quality over the whole mesh. The
harmonic formula considers the mesh quality of every single element in a very sensitive
way, so if at one single mesh the quality is really poor the overall mesh quality is also worse.
In comparison to the standard form the harmonic formula picks up the worst elements of
the mesh and bring it to appear, the harmonic mesh quality is really sensitive to poor
elements of the mesh. The standard form doesn't consider each element in such a way, it
only calculates the overall mesh quality without any quanti�er. At the standard form the
overall quality resides even when some elements are really bad.

One another criterion of quality is to calculate the dihedral angles (δ) looking for
the minimum and maximum extremes and calculating the average. It's also the second
criterion of mesh quality. The distribution of the dihedral angles (δ) o�ers a valuable
indication about the quality. The optimal angle relies on it's simplicity of the geometry
like at the equilateral triangular or tetrahedron. It is also possible to calculate the mesh
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quality with dihedral angles of each element with the formula, the optimal dihedral angles
of the equilateral simplices are 60◦ (triangle) and 70.53◦ (tetrahedron)

q =
δmin
δmax

(4.6)

where δmin is the minimal and δmax the maximal dihedral angle in a single element. The
third criterion is based on the mesh connectivity and evaluates the valency (number of
connected edges) for nodes classi�ed either to a region or to a surface, patch, or shell. Each
uniform triangle should have exactly 6 neighbours, but only the approximate value of 12
is available for the tetrahedral shape . As much the valency di�er from the optimal value
the mesh becomes more irregular in the neighbourhood of that node.[22][21][19]

a b

c
δ

(a) Shape of a single triangle.

δ

B
C

D

A

(b) Shape of a single tetrahedon.

Figure 4.2: Shows the two possible kinds of shapes mentioned in this chapter, the shape of
a triangle can only be used in two dimensional space for meshing because they are �at in
the opposite tetrahedrons are often used in three dimensional space, the quality of meshing
strongly depends on the di�erence to it's equilateral form of the shape. All criterion of
mesh quality comes are naturally based on the volume ratio of areas(volumes) of circles
(spheres) inscribed and circumscribed to a triangle (tetrahedron). The variables a, b, c
are the length of the triangle where as A, B, C, D are the area of a tetrahedron used to
calculate the mesh quality. One another criterion is the dihedral angle (δ) where the the
minimum and maximum extrema are used to calculate the quality of single element or
overall mesh quality.[22][21][19]

4.3.1 Mesh smoothing

Mesh smoothing is the way how to improve the quality of the overall mesh and each element.
The position of the element is changed but the overall topology remains unchanged with
mesh smoothing high frequents are blocked out which e�ect the mesh quality negatively.
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Changing the position of a single element can widely e�ect the mesh quality. There are
some di�erent methods how to smooth the mesh, but most of them are based on the
same principles where each position of one point is changed with holding the position of
surrounding points and quanti�ed this two requirements are used to calculate a new point.
These methods of mesh improving are really similar to methods of smoothing pictures,
where each color of all surrounding points are quanti�ed to calculated a new color so
failures(high frequents) are blocked out. Only with a few iterations over the mesh the
quality can improved drastic. One of the most common methods is Laplacian smoothing
where a mesh point is moved to be center of the surrounding points. This formula calculates

P =
1

N

n∑
i=1

αiPi (4.7)

a new point according to the Laplacian smoothing, where N is the total number of
surrounding points and αi the associated weighting coe�cient of all points (Pi), the variable
Pi inherit the coordinates (x,y,z) of those points and i is just the index of each element.
There are some other smoothing algorithm with di�erent number of points and weighting
coe�cients but they are still similar. The e�ect of mesh smoothing is shown on �gure 4.3
where the mesh is displayed without smoothing and after applying smoothing the Laplacian
algorithm.[5][18][8]

(a) Before smooting a mesh. (b) After smoothing a mesh.

Figure 4.3: These two pictures to show the e�ect of smoothing a mesh, which can improve
the quality of a mesh a lot. Smoothing also means changing positions of some notes. A lot
of mesh algorithm are optimized to improve the quality during computation the mesh .At
this case only a few positions are changed because the mesh was optimized before doing
mesh smoothing. The e�ect of smoothing is really less but some areas are smaller and
some are greater which means that the position of some notes has changed to improve the
quality of the mesh.
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4.3.2 Comparison of di�erent mesh qualities (1/2)

The quality can be e�ected by many factors especially by the used algorithm but before
computing any model, the mesh has do be done. The number of elements is also in�uenced
by the geometry. It's possible to achieve high mesh quality even with less amount of notes.
The following model used to compare the mesh quality with di�erent amounts of elements.

Figure 4.4: Before meshing, the geometry of each model has to be made at this case
the model is constructed with the program salome. This program is not a dedicated
construction program, it's mainly used for meshing. There are some tools in this program
which give the ability to construct simple geometries.

Figure 4.5: After meshing, there is a grid with shapes which are connected throw points
called notes. They are really important because each note is a single point where the
�nite element method is trying to solve the equation system. The way how all notes are
connected is crucial to this method. (Only the mesh of spheres is shown.)
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The mesh quality can be easily visualized with paraview and with the usage of the �lter
mesh quality and threshold value, it only shows the needed steps of quality levels.

(a) Mesh quality with the thresh-
old level of lower bound=3.

(b) Mesh quality with the thresh-
old level of lower bound=4.

(c) Mesh quality with the thresh-
old level of lower bound=10.

Figure 4.6: This �gure presents the quality of the same model like at �gure 4.11 with less
mesh quality and the parameters of maxsize=4.5 and minsize=0.5 and di�erent threshold
steps, which means that with increasing the lower limit only worse quality levels are shown
(approximately 57k elements).

(a) Mesh quality with the thresh-
old level of lower bound=2.

(b) Mesh quality with the thresh-
old level of lower bound=3.

(c) Mesh quality with the thresh-
old level of lower bound=4.

Figure 4.7: This �gure presents the quality of the same model like at �gure 4.10 with higher
mesh quality and the parameters of maxsize=1.5 and minsize=0.5 and di�erent threshold
steps, which means that with increasing the lower limit only worse quality levels are shown
(approximately 1350k elements).

Figure 4.6 and �gure 4.7 show that with increasing the number of mesh notes the
quality could be dramatically increased, but the mesh should be still considered even with
higher amounts of elements because the quality could still be worse.



CHAPTER 4. MESHING AND QUALITY 23

4.3.3 Comparison of di�erent mesh qualities (2/2)

The quality can be e�ected by many factors especially by the used algorithm but before
computing any model, the mesh has do be done. The number of elements is also in�uenced
by the geometry. It's possible to achieve bad mesh quality even with high amount of notes.
The following model used to compare the mesh quality with di�erent amounts of elements..

Figure 4.8: Before meshing, the geometry of each model has to be made at this case
the model is constructed with the program salome. This program is not a dedicated
construction program, it's mainly used for meshing. There are some tools in this programm
which give the ability to construct simple geometries.

Figure 4.9: After meshing, there is a grid with shapes which are connected throw points
called notes. They are really important because each note is a single point where the
�nite element method is trying to solve the equation system. The way how all notes are
connected is crucial to this method. (Only the mesh of spheres is shown.)
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The mesh quality can be easily visualized with paraview and with the usage of the �lter
mesh quality and threshold value, it only shows the needed steps of quality levels.

(a) Mesh quality with the thresh-
old level of lower bound=3.

(b) Mesh quality with the thresh-
old level of lower bound=4.

(c) Mesh quality with the thresh-
old level of lower bound=10.

Figure 4.10: This �gure presents the quality of the same model like at �gure 4.11 with
higher mesh quality and the parameters of maxsize=1.5 and minsize=0.5 and di�erent
threshold steps, which means that with increasing the lower limit only worse quality levels
are shown (approximately 1600k elements).

(a) Mesh quality with the thresh-
old level of lower bound=2.

(b) Mesh quality with the thresh-
old level of lower bound=10.

(c) Mesh quality with the thresh-
old level of lower bound=40.

Figure 4.11: This �gure presents the quality of the same model like at �gure 4.10 of the
same model with lower mesh quality and the parameters of maxsize=1.4 and minsize=0.5
and di�erent threshold steps, which means that with increasing the lower limit only worse
quality levels are shown (approximately 2500k elements).

Figure 4.10 and �gure 4.11 show that with increasing the number of mesh notes the
quality could be dramatically decreased, so the mesh should be still considered even with
higher amounts of elements because the quality could be worse.



Chapter 5

Goals,structure and post processing
of all simulations

5.1 Goals

Super magnets always consist of hard magnetic and soft magnetic materials, one goal of this
study is to �gure out how the soft phase in�uences the behaviour of all BH-loops. The grain
sizes and especially the properties of the soft magnetic part is really critical to the values of
the coercive force (HC) and the maximum energy product ((BH)max). So this study shows
how the soft phase e�ects these two values. Chapter 3 was introduced because at all these
simulations in this study the geometry of spheres and a cube is used. Spheres which are
di�erent aligned and applied with di�erent counts to replace space from the cube. At this
study spheres become hard magnetic and soft magnetic and the intersected cube becomes
the opposite of the used material,to �gure out the best alignment. The main reason why
spheres are used is, that this geometry in�uences the behaviour of the computed BH-
loops less. Each corner of another geometric body like a quad or tetrahedron will generate
magnetic �elds which in�uence the behaviour negative, that's why spheres are used because
there are no corners. According to chapter 3 there are only a few possible alignments for
packing spheres together so there are some limitations because of the applied geometry.
This is another reason why this chapter was introduced because it's not possible to replace
as much space as wanted. So the goals of this work are how does grain size,volume
ratio, and geometry e�ect super magnets and the associated magnetic �eld. The �rst
aim about all computations was to determine the right mesh size. At chapter 6 there are
some simulations done with di�erent geometries but at each model also di�erent mesh
parameters are tested, to determine the maximum and minimum step size of the mesh
and to achieve high accuracy at the computations. This leads to the next point that all
simulations are compared at chapter 7, to show the e�ect of the soft phase to all computed
BH-loops. In this study there are also two simulations to show the e�ect of wide areas
of the soft phase, this is another goal of this work which is summarized at chapter 8.At
chapter 9 a set of simulations is computed with three di�erent grain sizes , to show the
e�ect of soft magnetic phase if the grain size and volume ratio vary.

25



CHAPTER 5. GOALS,STRUCTURE AND POST PROCESSING OF ALL SIMULATIONS26

5.2 Structure

At this section the structure of all simulations is mentioned it's only a short overview but it
shows how to create all simulations with the used models and parameters. It also illustrates
the main programs which are used in this study. All models and the post processing is
done with �ve di�erent programs each program has it's own emphasis into this work. So
let's start with the �rst one, it's called YADE (Yet Another Dynamic Engine). It's main
responsibility is to generate the coordinates of the spheres which are di�erent aligned the
coordinates are saved to text �les which are used to generate the geometry and the mesh.
At YADE it is also possible to de�ne the boundary where all spheres are placed. The
next program is called Salome it's just a program which is used to generate the model and
to compute the mesh for all these simulations. Users are also capable to write di�erent
scripts for the program Salome and YADE with programming language Python. One
another program at this study is the program FEMME (Finite Element Micro MagnEtics)
it's just the solver to compute the model(problem) about micro magnetics. FEMME is
used to calculate the complex di�erential equation with �nite element methods. The last
one is needed for post processing, it's a open framework program which is called Matplotlib.
Some programs mentioned in this section are working with the interface and programming
language Python. FEMME and convert2ucd are executables with di�erent inputs and
outputs at the opposite (YADE,Salome,Matplotlib) the interface of Python(*.py) is used.

YADE Salome FEMME Matplotlib

makegeo*.py makemesh*.py
makegeohex.py

makeplotfromdic.py
makesimetup.py

makesimstart.py

co
nv

.

*.pdf(Output)
(hysteresis(loop)file.txt(Input)

*.txt(Coor.)

*.unv(Mesh)
*.txt(Datas)

.

.

P
arF

iles

*(Dir.)\loop.log
(((((((((.\*.text
(((((((((.\model.krn

Coordinates Meshing Computing PostPro
*(Dir.)\loop.par
(((((((((.\model.*

Figure 5.1: This �gure just describes the four main stages of this work where all important
scripts and programs are mentioned. At the �rst stage the coordinates of the spheres are
computed with the program YADE. After generating geometry and the mesh with the
program Salome, the Python script makesimsetup.py is used to do the structure of all �les
and the computations with FEMME. It also converts the model and copy the text �le
for post processing. This script has also the duty to do all directories and subdirectories
for the simulations. The �le names in this directory are equal (model.*) because at the
parameter �le (loop.par) the problem name is denoted. The next step is just to compute
the model with FEMME on any cluster system. After computing the model the hysteresis
loops are generated with Matplotlib. At each stage of the process di�erent �les are created,
but the last �le is just a pdf with the hysteresis loop.

Remark The character * means arbitrary because the �le names depends one the input
and there is too less space to show every used �led.
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YADE (Yet Another Dynamic Engine)

YADE or Yet Another Dynamic Engine is a particle simulation program, which is used
at this study to generate all coordinates of the spheres. The main interface of YADE is
the programming language Python but this program is written in C++. There are two
main commands which are used to generate the coordinates of the spheres.The command
makeCloud is used to determine the boundary and the properties of spheres. At this
study the boundary is a cube. Another command is regularHexa this command de�nes a
grid where all spheres are aligned into hexagonal lattice within a boundary.The output of
YADE are text �les with the coordinates of the spheres and the cube. The command Ran-
domDensePack generates spheres which are close together and maybe intersect them.

Salome

Salome is just a program for generating geometries and meshing. It is also possible to write
di�erent scripts for Salome. At this study its input is a text �le generated from YADE.
The main data which are extract from this text �le are the boundary of the cube and
the coordinates and radius of each spheres. After reading those datas the Salome script
generate the geometry and computes the mesh with some parameters like the maximum
mesh size and minimum mesh size. The interface of Salome is just Python but it's also
possible to control the program from a graphical user interface. The main outputs of the
script are the mesh (*.unv) and one text �les (*.txt) which includes some data used for
post processing.

FEMME (Finite Element MicroMagnEtics)

FEMME is just the solver which calculates the micro magnetic �eld of the model. The pro-
gram FEMME needs the converted mesh in the right format(*.ijk) and some parameters
�les. The parameter �les are just simple text �les which de�nes the material proper-
ties(*.krn),alignment of the magnetic �eld(*.ini) and the parameters for computation the
hysteresis loop (*.par). The main output is one single �le (*.log) where informations of
the computed BH-loops are stored.

convert2ucd

The tool convert2ucd is just a program to convert the generated unv �le from Salome to
another format for FEMME(*.ijk,*inp). The mesh(*.unv) has to be converted because the
solver needs another format to compute di�erential equation system.

Matplotlib

Matplotlib is the plotting tool which generates all the hysteresis loops in this study. The
main input are the log(*.log) �le from the program FEMME and material properties(*.krn)
which are used during the computation and text �le from the program salome where the
volume of the spheres and the intersected cube are stored. This �le is used to get volume
fraction of the soft and hard phase and also some meshing properties. The script for
Matplotlib generates plots for all the needed hysteresis loops. It's output are pdf �les
which are used to write this study.
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5.3 Python scripts

This section is just to give a short overview, not to explain everything. Those explanation
are for people who are familiar with the used programs,scripting with Python and server
structure. All scripts are used to operate with the these programs.

Remark It's recommended that each script has it's own working directory. Scripts and
working directories should be arranged in the same main directory. So it's advanta-
geous to have the following structure.

Directory \...

.\makegeo (Directory of the di�erent text �les for the used models.)

.\makegeo*.py (YADE script for the sphere packing problem.)

.\makemesh (Directory where the �les for the mesh have to be stored.)

.\makemesh*.py (Salome script for doing the geometry and the mesh.)

.\makesimsetup (Directory with subdirectories for di�erent meshes and paramter �les.)

.\makesimsetup.py (Creates subdirectories and converts the meshes.)

.\�nished (All �nished computation from FEMME.)

.\makeplot (Directory where to save all generated plots.)

.\makeplotfromdic.py (Script for doing the plots with Matplotlib)

.\makeplotfrom�le.py (Included �le needed for makeplotfromdic.py)

Yade script - makegeo*.py

The main purpose of the makegeo scripts is, to generate �les where the boundary of the
cube is de�ned and the coordinates of the spheres. The input �le just has a simple structure
Input �le:

B S R V

100 95 10 0

At the �rst line only variables for names are used (B..Block,S..Spheres,R..Radius,V...Variance)
and on the second line the real parameters for calculating the sphere packing problem are
mentioned. The �rst number (100) just stands for the dimensions of the block in each
direction, followed by 95, this is just the number of spheres which have to be placed within
the cube and 10 is the average radius, where as 0 just stands for the variance. So the
YADE script just generates another directory within the directory makegeo which has the
name of the input �le, the number of �les which are computed depends on how much lines
are added to the input �le. This script will now generate the output �le.
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Output �le:

91.0 10.0 0.0

100.0 100.0 100.0

-42.7167956184 -33.7212333435 37.2189794751 10.0

-18.0260566924 18.0651146896 21.1519270568 10.0

-0.969388833551 -24.1364406599 38.0797303421 10.0

-7.18251143606 -40.3415494234 -44.8788748278 10.0

....

The output �le is just similar to the input �le but at the �rst line the number 91 stands for
how much spheres YADE was able to put in the cube where as 10 stands for the average
radius and 0 for the variance. Followed by the next line 100 is the size of cube in each
direction. After the main properties the coordinates of spheres are stored and the radius
at each line. The output �le has the name __B_100__S_100__R_10__V_0.txt. There are
three di�erent scripts which will generate di�erent kinds of packed spheres.

makegeo.py Yade - Command "MakeCloud(...)", spheres are well separated.

makegeo1.py Yade - Command "randomDensePack(...)",spheres are close together.

makegeohex.py Yade - Command "regularHexa(...)",spheres are aligned regular.

Each script must be started with command yade -x scriptname, it's recommended to
use the operating system Linux because it is easier to install.

Salome script - makemesh*.py

The scripts for Salome have the duty to compute the geometry and to do the mesh for
all the models. They are really simple to use because only the input �le and the di-
rectory where the output has to be stored be must de�ned , so at this case the output
directory is makemesh. The �le name is generated from the input �le, it looks like this
__B_100__S_100__R_10__V_0.txt , so it means that the size of the cube is 100, there
should be 100 sphere in it(maybe) with radius of 10 and the variance of zero. After read-
ing this �le the scripts generates two �les at the directory. The �rst one is the generated
mesh (__B_100__S_100__R_10__V_0.unv) and the second one some data for post process-
ing (__B_100__S_100__R_10__V_0.txt). That leads to next step to make the structure of
the the computations. There are also some di�erent scripts because of di�erent types of
geometries. The scripts can be open from the graphical user interface or from the command
line. It's recommended to use the operating system Linux because Salome is more stable
on it and can handle much more data.

makemesh.py Salome - script for doing spheres which are aligned well.

makemesh2.py Salome - script for common spheres.

makemesh3.py Salome - script for doing a hexagonal grid.
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Python script - makesimsetup.py

The Python script makesimsetup.py is written to make the structure of all simulations.
It's similar to all other scripts which are used in this study. For doing the directories and
subdirectories only the place where the meshes(*.unv) and post processing �les(*.txt) are
stored have to be de�ned and also the path of the output directory. For computing the
models the parameter �les have to be stored into the same subdirectory where and text
and mesh �les are saved. The parameter �les should have following �les in it.

loop.par (Paramter �le for FEMME, for computing the hysteresis loop)

run (For the cluster system, to specify how much resources are allowed to use)

model.krn (The properties of the used materials at the mesh(model).)

model.ini (The alignment of the magnetic �eld at the start of the simulation.)

The script just makes several subdirectories, each of these has a combined name from the di-
rectory of the parameter �les and the used mesh �le (*.unv). So if directory of those param-
eters �les has the name par1 and the mesh is called __B_100__S_32__R_15_0__V_0.unv the
script will make a new name to create the directory (par1__B_100__S_32__R_15_0__V_0)
where the �les and problem is saved. After doing this, the script will copy each �le from the
directories of the used parameter �les(Par�les) into the new directory and will also convert
the mesh(*.unv) into a new format(*ijk,*inp). It is also possible to use several directories
for the parameter �les and di�erent unv �les. The script will generate for each mesh(*.unv)
�le a new directory with the used parameter �les. It will also rename all �les which are
copied from the directory of the parameter �les and also the mesh(*.unv), because at the
�le loop.par the name of the computation is de�ned so the name mentioned in loop.par
and the used name of converted the mesh(*.ijk) and parameter �les must be equal. At
this case the script will rename the pre�x of all �les into model.* excluded loop.par . The
problem name must speci�ed at loop.par and at this script.

Python script - makesimstart.py

This script is just written to start the computation at each subdirectory onto the cluster
system, it's really simple and short. The upper path of the subdirectories must be de�ned
and this script will execute every problem into those subdirectories. The command of this
scrip is qsub run it means that cluster system will execute the problem (model) with the
name mentioned in this �le (run) and will search for the parameter �les of the hysteresis
loop(loop.par). This script will also start all simulation for FEMME.

Matplotlib script - makeplotfromdic.py

After �nishing the computations the generated data from FEMME have to be analysed.
This script is searching for subdirectories and passes the path to makeplotfrom�le.py . It
generates for each subdirectory di�erent plots with the usage of loop.log(computed values
from the model),model.krn( properties of the used materials) and the generated text �le
(data for post processing) from Salome which are stored in this subdirectories. If one of
those �les is not existing this script will not generated the associated plot.
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5.4 Post processing and calculating the hysteresis curves (BH-
loop)

To compare all the di�erent models with di�erent properties and features the BH-loops
must be done. The script makeplotfromdic.py is just used to do all hysteresis loops, but
there are three �les which are needed to generated all the hysteresis loops for each computed
problem. Post processing is the last stage at this work of generating new data, after
computing the model and after plotting these BH-loops must be analysed and interpreted.

*.log (Stored data of the computed the model)

*.krn (The properties of the used materials at the mesh(model).)

*.txt (The generated text �le from Salome for post processing.)

This script will search for each �le at the subdirectories which are mentioned in the input
path of the script.

if(len(sys.argv))> 1:

dir_name_in=sys.argv[1]

else:

dir_name_in=_char+'finished\FORC\FORC1'

This means the script will search for �les at the subdirectory of FORC1 and will generate
the output �le. The path where all �les have to be stored is also denoted in the script.

if(len(sys.argv))>2:

dir_name_out=sys.argv[2]

else:

dir_name_out=_char+'makeplot'

This script will save all pdf �les into the subdirectory of makeplot called FORC1. After
searching for all three �les(*.log,*.krn,*.txt) into the list of all subdirectories (list_subdir)
within the input path.

for i in range(len(list_subdir)):

for filename in os.listdir(list_subdir[i]):

file_txt=""

if fnmatch.fnmatch(filename, '*.txt'):

file_txt=os.path.join(list_subdir[i],filename)

filelist_txt_full_path[i]=file_txt

print file_txt

file_log=""

if fnmatch.fnmatch(filename, '*.log'):

file_log=os.path.join(list_subdir[i],filename)

filelist_log_full_path[i]=file_log

print file_log

file_krn=""

if fnmatch.fnmatch(filename, '*.krn'):
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file_krn=os.path.join(list_subdir[i],filename)

filelist_krn_full_path[i]=file_krn

print file_krn

The script will pass all located �les to the printing functions which will do the hysteresis
loop

make_plot(file_dic,_char)

make_plot_full(file_dic,_char)

make_plot_all_in_one_full(file_dic,_char)

where file_dic is just the array with the located �les and _char the character for sep-
arating directories (\ or /). Each plotting function will iterate over the list and open
these 3 �les(*.txt,*.log,*.krn) and generate the plots for just each model(and subdirec-
tory). Nevertheless the scripts are sometimes changed because of di�erent requirements
but the script make_plot() will plot one curve where as the function make_plot_full()

will print the whole x-range of collected data. There is one special plotting function which
will put all loops into one graph (make_plot_all_in_one()). Each function will open all
three �les(*.krn,*.txt,*.log) and plot the BH-curves.

def make_plot(file_dic,_char):

.

for d in range(len(file_dic)):

.

#reading from krn file

f_3=open(file_dic[d][2],'r')

.

#reading from txt file

f_1=open(file_dic[d][0],'r')

.

#reading from log file

f_2=open(file_dic[d][1],'r')

.

.

plot(.....)

.

#function end

This form is equal at all plotting functions because each function will open those �les and
extract the data from it and will generated the hysteresis curve into a pdf. Each input
�le is di�erent because the krn �les stores the properties of the material, the txt �le the
volume of the intersected cube and the spheres and the log �le the computed values for
the BH-loop.
The krn(material properties �les has the look of

0.0 0.0 0.0 0.0 2.14 2.5e-11 1.0 0.0

0.0 0.0 4.2e6 0.0 1.6 1.0e-11 1.0 0.0
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where the material characteristics are stored. The �rst lines are the properties of the
intersected cube and second line are the spheres. There are only two variables used, the
value of JSsoft = 2.14 and JShard = 1.6 for doing the plots. JSsoft means this property belongs
to soft and JShard

to hard magnetic material. This two values are used the calculate the
weighting factor f and the associated �ux density (B),the weighting factor is explained
later.
At the txt (volume of spheres and the intersect cube) �le

Volume_intersected_block: 414334.682795 Volume_inserted_spheres: 585665.312917

there is a line where the volume of the intersected cube and spheres are stored. The volume
of VCube = 414334.68 and VSpheres = 585665.312917 are also used for the weighting factor
f to calculate the �ux density (B). This �le is generated by the Salome script.

The computed log (values of the BH-curves) �le from FEMME has the form of

#_1_inp_number 2_time ...10_hextX 11_hextY 12_hextZ 13_htotal 14_mx 15_my 16_mz

. .

. .

. .

where the number stands for the column, _hext for the external magnetic �eld (H) and
_m for the magnetization (M) each value in Tesla (T) even (H) because of normalizing
this variable for easier computing. The direction is mentioned with x(X),y(Y),z(Z). At
this study the values of the z coordinates are used so the value 12_hextZ and 16_mz are
needed, because the external magnetic �eld (H) is changed along this direction.

The �rst and easiest plots are where only the external �eld(H) and the magnetiza-
tion(M) are shown, so the value of 12_hextZ and the associated 16_mz are illustrated.
This is at chapter 6 and chapter 7 where the volumes are equal and the fraction is not
important to the M(J)H-loops to compare them.
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Figure 5.2: This �gure illustrates the easiest kind of plotting, where the di�erent volume
fractions of the super magnet are not respected. It also shows which values are plotted
so the magnetic �eld strength(H) is plotted from values of 12_hextZ and the associated
magnetization (M) is plotted from the values of 16_mz which are stored into computed
logging �le(*.log) from FEMME. This curve is called a MH or JH-curve.
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The second from is a little bit more tricky but it respects the volume fraction of
the hard and soft magnetic material. The �ux density (B) is illustrated at chapter 8 and
9. Before showing the �ux density the weighing factor f must be calculated. This value is
calculated with the formula

f =
VSpheres ∗ JSpheres + VCube ∗ JCube

VSpheres + VCube
(5.1)

where V considers the volume of the spheres and intersected cube , and J(saturation
magnetism) is the property if hard or soft magnetic material is used(JSsoft = 2.14 and
JShard = 1.6). This leads to the next step to calculate the �ux density (B). This script
takes the two volumes from the text �le(*.txt) and the material properties(*.krn) (J) and
calculates the weighting factor f. After doing this it computes the �ux density according
to his formula.

B = µ0(H +M) (5.2)

B = µ0 ∗H + µ0 ∗M (5.3)

B = µ0 ∗H + J (5.4)

B = 12_hextZ+ f ∗ 16_mz (5.5)

So before calculating the �ux density the weighting factor f must be calculated and multi-
plied with 16_mz and added to the value 12_hextZ.
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Figure 5.3: This �gure illustrates the second kind of plotting in this study, where the
volume fractions and material properties of the magnet are respected. It also shows which
values are plotted so the magnetic �eld strength(H) is plotted from the values of 12_hextZ
and the associated �ux denstiy (B). The value of the �ux density must be calculated with
the weighing factor f . This curve is called a BH-curve or hysteresis loop.
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One another value which is sometimes calculated in this work is the maximum energy
product((BH)(max)). This value is the maximum of the product with the �ux density (B)
and the external �eld (H) over all calculated values must be taken. So it is computed by
this formula

(BH)max = max(H ∗B) (5.6)

where H is normalized from FEMME(*.log) and in Tesla(T) and must must be converted
to kA/m.

(BH)max = max(H ∗B) (5.7)

12_hextZ = H ∗ µ0 (5.8)

(BH)max = max(
12_hextZ ∗B

µ0
) (5.9)

At the script the value of the maximum energy product is calculated with iterating of
those two values(H,B) and at each index a new value is calculated ((BH)(max)) this value
is compared with the computed value before and if the new value is bigger than the old
value the old one will be replaced. The value of(BH)(max) must be calculated in the second
quadrant so the magnetization (M) must positive.

if((math.fabs(mz[i]*hz[i]) > BH_max) and (mz[i] > 0)):

BH_max=math.fabs(mz[i]*hz[i])

The script for doing the post process must be adapted every time, or the functions within
the script must be copied and changed because sometimes the magnetization(M) is shown
and at another chapter the �ux density. Like this lines of the script,

hz.append(float(tabele[11]))

#mz.append(float(tabele[15]))

mz.append(hz[i]+float(tabele[15])*f)

One line is not active because the �ux density(B) is shown.



Chapter 6

Some trials with magnetic materials

6.1 Determine the required mesh size

6.1.1 Introduction

First of all the mesh size is a factor of the accuracy for computing �nite elements and at this
case important at calculating the demagnetizing curves, so there are several computations
done do determine the required grid size for the used geometry. The number of tetrahedrons
a�ects the accuracy of the computation and the hysteresis loop. There is no way to �nd
the exact parameters for any amount of tetrahedrons, but it's possible to do some kind of
pre-computing. Also just to mention meshing is also really time-consuming, so the best
way is to try di�erent parameters at the pre-computing for the mesh (min/max - size)
before doing the real mesh. The �st simulation has approximately 57k tetrahedrons and
the last one approximately 1350k elements. If the count of tetrahedron is octuplicate the
real mesh size is divide especially the maximum step size of the mesh. At all simulations
there are two di�erent sets of parameters, which means at the �rst set of parameter �les
(par1) the hard magnetic material is the intersected cube and at the second parameter set
(par2) the soft magnetic material is replaced by spheres which consist of hard magnetic
material. The total volume of the cube is 100 nm times 100 nm times 100nm = 106nm3,
the model of all simulations always consists of an intersected cube and some spheres.

parameter sets for next simulations

parameter set block spheres

par 1 hard magnetic shell soft magnetic core
par 2 soft magnetic shell hard magnetic core

Table 6.1: Parameter sets for the simulations

Table 6.1 presents the two parameter sets of all simulations, at all models there are
two di�erent computations done, which means at one simulation the spheres consist of
hard magnetic material and at the second simulation the spheres consist of soft magnetic
material.

36
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6.1.2 Low density packed spheres

This name has nothing to do with the real dense (P) of packed spheres from chapter 3 only
with the alignment of those spheres.

100nm
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0
0
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m

R15nm

Figure 6.1: Top view - cut through the cube with low density packed spheres which shows
the space between each sphere, they are all well separated, at this case all spheres are
equal sized. Spheres which hit the boundary of the cube are cut. The volume ratio is still
the same like at the other simulations of chapter 5 and each sphere has the same radius
(r=15nm).

Explanation

This �rst attempt was to determine the required mesh size for all the next simulations. At
this point it wasn't clear that there is a big trade o� between geometry, packing density
and sphere size. At this simulation all spheres within the intersected cube have the radius
of 15nm, they are all well separated and each sphere doesn't touch any other sphere. Areas
of spheres which are outside the cube are cut so that the overall geometry is still a cube
and it makes it easier to compare this run with next simulations because of the same
volume. The method of low (random) density packed spheres makes it possible that only
approx. 35 percent of the total volume can be replaced by spheres if the spheres have
equal sizes. If the radius of those spheres is decreased the density of spheres could be
slightly higher but with the problem of computing time and meshing awareness. All next
simulations are done with density of 0.3 so the spheres replace approximately 30 percent
of the intersected cube. There are two sets of parameters used, at �rst parameter set
(par1) the hard magnetic material is the cube and the spheres within the cube consist of
soft magnetic material. The second parameter set is used for the case that hard magnetic
material is inside the cube and soft magnetic material is at the outside.
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6.1.3 Low density packed spheres - Mesh of simulation 1 (57k)

(a) Mesh of spheres. (b) Mesh of the intersected cube.

Figure 6.2: Shows the two meshes used for the �rst simulation of low density packed spheres
with low mesh quality, this mesh is used to compare the computed results.

6.1.4 Low density packed spheres - Mesh of simulation 4 (362k)

(a) Mesh of spheres. (b) Mesh of the intersected cube.

Figure 6.3: Shows the two meshes used for the fourth simulation of low density packed
spheres with higher mesh quality, this mesh is used to compare the computed results.
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6.1.5 Low density packed spheres - BH-loops of �rst parameter set
(par1) (Spheres=28; Radius=15nm)

At these simulations the geometry of low density packed spheres is used. The intersected
cube consist of hard magnetic material and 30 percent of space is replaced by soft magnetic
material. All spheres are well separated from each other.
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Figure 6.4a: Demagnetization curve for a nano composite magnet with volume fraction of
soft about 0.3, soft sphere size with the radius of 15nm and max mesh size by 4.5nm.
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Figure 6.4b: Demagnetization curve for a nano composite magnet with volume fraction of
soft about 0.3, soft sphere size with the radius of 15nm and max mesh size by 2.05nm.

Figure 6.4a up to 6.4b show some BH-loops of low density packed spheres with the �rst
parameter set and some signi�cant points where these curves di�er because of di�erent
amount of calculations elements at the mesh.
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6.1.6 Low density packed spheres - Comparison of all BH-loops within
the �rst parameter set (par 1) (Spheres=28; Radius=15nm)

At this attempt most of the volume consist of hard magnetic material and approximately
30 percent of the cube is replaced by spheres which consist of soft magnetic material. At
�gure 6.5 all computations are compared with di�erent mesh parameters to �gure out the
best parameters with low computation time but and high accuracy.
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Figure 6.5: Comparison of all BH-loops within parameter set 1 with di�erent tetrahedron
count at this case the spheres consist of soft magnetic material and the intersected cube
of hard magnetic material, approximately 30 percent of the total volume is replaced by
spheres. The geometry is low density packed spheres, all spheres have equal sizes (r=15nm).

Conclusion

According to �gure 6.5 there is a big shift between the simulation 1 with only 57k elements
and those simulations between 200k up to 1.4m elements. The �st simulation only took
approximately 30 minutes to compute on the other side the simulation with 1.4 million
elements was �nished after one and a half day. Just to mention the real mesh size is
divide from simulation 1 to simulation 4, so if the mesh size is divide the elements must
be multiplied with the factor 23 because of the fact that the model of these computations
consists of three lengths in each direction of space . Simulations with higher amout of
tetrahedrons di�er less but computations with higher accuracy take a lot more time. There
is always a trade o� between higher accuracy and computation time, computation time is
not relevant as long as the account of simulation is less, but if the number of simulations
rises it could be big problem if the accuracy is too high.
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6.1.7 Low density packed spheres - BH-loops of second parameter set
(par2) (Spheres=28; Radius=15nm)

At these simulations the geometry of low density packed spheres is used. The intersected
cube consist of soft magnetic material and 30 percent of space is replaced by hard magnetic
material.All spheres are well separated.
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Figure 6.6a: Demagnetization curve for a nano composite magnet with volume fraction of
hard about 0.3, hard sphere size with the radius of 15nm and max mesh size by 4.5nm.
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Figure 6.6b: Demagnetization curve for a nano composite magnet with volume fraction of
hard about 0.3, hard sphere size with the radius of 15nm and max mesh size by 2.05nm.

Figure 6.6a up to 6.6b show some BH-loops of low density packed spheres with the
second parameter set and some signi�cant points where these curves di�er because of
di�erent amount of elements at the mesh.
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6.1.8 Low density packed spheres - Comparison of all BH-loops within
the second parameter set (par2) (Spheres=28; Radius=15nm)

At this attempt most of the volume consist of soft magnetic material and approximately
30 percent of the cube is replaced by spheres which consist of hard magnetic material. At
�gure 6.7 all computations are compared with di�erent mesh parameters to �gure out the
best parameters with low computation time but and high accuracy.
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Figure 6.7: Comparison of all BH-loops within parameter set 2 with di�erent tetrahedron
count at this case the spheres consist of hard magnetic material and the intersected cube of
soft magnetic material, approximately 30 percent of the total volume is replaced by spheres.
The geometry is low density packed spheres, all spheres have equal sizes (r=15nm).

Conclusion

The hard magnetic part switched to soft magnetic material, so the volume of the intersected
cube becomes soft magnetic. The di�erence between all these simulations isn't the same
like at �gure 6.5, but still high, all simulations are still normalized , so it's not carried out
how much the grid size in�uences the accuracy of (BH)max values. The BH-loop of the �rst
simulation now hits the x-axis with the value of about 0.75 but simulations with higher
tetrahedron count hit the x-axis around 0.5. This group of simulations also shows that the
accuracy is not only in�uenced by mesh parameters also by material parameters. Nano
composite magnets always consist of hard and soft magnetic phases, which means that the
solver has to compute sti� systems, it leads to the problem that one part of the equation
system is changing a lot more faster than the other one. At this group of simulations almost
all volume of the cube consists of soft magnetic material which leads to the problem hard
magnetic part in�uences the equation system less.
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6.2 High density close packed spheres

This name has nothing to do with the real dense (P) of packed spheres from chapter 3 only
with the alignment of those spheres.
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Figure 6.8: Top view - cut through the cube with high density close packed spheres, spheres
now intersect with another spheres they are not separated which can lead to bad results
at the BH-loops because of wide areas of soft magnetic material but the volume ratio is
still the same like at the other simulations of chapter 4 and 5, all spheres have equal sizes
(r=15nm).

Explanation

This was the second try but spheres within the cube are not separated from each other,
some may touch another some not. This attempt is also done with di�erent mesh sizes to
get the best result but the geometry is still the same. According to the �rst run with low
(random) density packed spheres it is recommended to use the same volume ratio, so 30
percent of the total volume is replaced by spheres the rest consist of the intersected cube,
so it is possible to compare all simulations and �gure out some di�erences with nearly
same volume fractions. All spheres have the same size and the grain size with the radius
of 15nm. At this try it was not clear how to replace much more space with spheres so the
easiest solution was that those spheres are allowed to touch another one. All spheres are
inside the cube, none of those hit the boundary of the cube. High density close packing is
the easiest way to replace a lot space by spheres or with any shape, because of the fact that
spheres are allowed to intersect them, this results into the worst case of all three attempts.
All simulations show that the grade of areas about soft magnetic materials in�uences the
BH-loop dramatically. The geometry of the soft magnetic material is one main factor of
the strength of super magnets.
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6.2.1 High density close packed spheres - Mesh of simulation 1 (57k)

(a) Mesh of spheres. (b) Mesh of the intersected cube.

Figure 6.9: Shows the two meshes used for the �rst simulation of high density close packed
spheres with lower mesh quality, this mesh is used to compare the computed results.

6.2.2 High density close packed spheres - Mesh of simulation 4 (362k)

(a) Mesh of spheres. (b) Mesh of the interescted cube.

Figure 6.10: Shows the two meshes used for the fourth simulation of high density close
packed spheres with higher mesh quality, this mesh is used to compare the computed
results.
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6.2.3 High density close packed spheres - BH-loops of �rst parameter
set (par1) (Spheres=28; Radius=15nm)

At these simulations the geometry of high density close packed spheres is used. The
intersected cube consist of hard magnetic material and 30 percent of space is replaced by
soft magnetic material with spheres.All spheres are close together.
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Figure 6.11a: Demagnetization curve for a nano composite magnet with volume fraction
of soft about 0.3, soft sphere size with the radius of 15nm and max mesh size by 4.5nm.

0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0.0
Magnetic Field Strength(H)

0.8

0.6

0.4

0.2

0.0

0.2

0.4

0.6

0.8

1.0

M
ag

ne
tiz

at
io

n(
M

)

par1_4__B_100__S_32__R_15_0__V_0

Vol.(Block): 6894.0 [hard]  
Vol.(Spheres): 3114.0 [soft]  
Spheres: 28.0 
Rad.: 15.0 
Var.: 0.0 
MaxSize.: 2.075 
MinSize.: 0.5

Figure 6.11b: Demagnetization curve for a nano composite magnet with volume fraction
of soft about 0.3, soft sphere size with the radius of 15nm and max mesh size by 2.075nm.

Figure 6.11a up to 6.11b show some BH-loops of high density close packed spheres with
the �rst parameter set and some signi�cant points where these curves di�er because of
di�erent amount of calculation elements at the mesh.
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6.2.4 High density close packed spheres - Comparison of all BH-loops
within the �rst parameter set (par1) (Spheres=28; Radius=15nm)

At this attempt most of the volume consist of hard magnetic material and approximately
30 percent of the cube is replaced by spheres which consist of soft magnetic material. At
�gure 6.12 all computations are compared with di�erent mesh parameters to �gure out the
best parameters with low computation time but and high accuracy.
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Figure 6.12: Comparison of all BH-loops within parameter set 1 with di�erent tetrahedron
count at this case the spheres consist of soft magnetic material and the intersected cube
of hard magnetic material, approximately 30 percent of the total volume is replaced by
spheres. The geometry is high density close packed spheres, all spheres have uniform sizes
(r=15nm).

Conclusion

The new BH-loops show that the mesh size is still a big factor which in�uences the accuracy
of computing �nite elements. There is also a big di�erence between �gure 6.5 and �gure
6.12. At �gure 6.12 it seems that the BH-loop response to soft-magnetic materials but it
belongs to a hard magnetic material, so the geometry and distribution also in�uences the
behaviour of all BH-loops. Just to mention most of the spheres are connected together, so
there is no break between them. Simulations with higher tetrahedron count di�er less but
computations with higher accuracy take a lot more time to �nish. There is always a trade
o� between higher accuracy and computation time, computation time is not relevant as
long as the account of simulation is less, but if the number of simulations rises it could be
a big problem if the accuracy is too high. Other simulations show that the best parameters
for computation are still maxsize=1.5/minsize=0.5 of the mesh to achieve high accuracy.
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6.2.5 High density close packed spheres - BH-loops of second parameter
set (par2) (Spheres=28; Radius=15nm)

At these simulations the geometry of high density close packed spheres is used. The
intersected cube consist of soft magnetic material and 30 percent of space is replaced by
hard magnetic material with spheres. All Spheres are close together.
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Figure 6.13a: Demagnetization curve for a nano composite magnet with volume fraction
of hard about 0.3, hard sphere size with the radius of 15nm and max mesh size by 4.5nm.
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Figure 6.13b: Demagnetization curve for a nano composite magnet with volume fraction
of hard about 0.3, hard sphere size with the radius of 15nm and max mesh size by 2.075.

Figure 6.13a up to 6.13b show some BH-loops of high density close packed spheres with
the second parameter set and some signi�cant points where these curves di�er because of
di�erent amount of calculation elements at the mesh.
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6.2.6 High density close packed spheres - Comparison of all BH-loops
within the second parameter set (par2) (Spheres=28; Radius=15nm)

At this attempt most of the volume consist of soft magnetic material and approximately
30 percent of the intersected cube is replaced by spheres which consist of hard magnetic
material. At �gure 6.14 all computations are compared with di�erent mesh parameters to
�gure out the best parameters with low computation time but and high accuracy.
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Figure 6.14: Comparison of all BH-loops within parameter set 2 with di�erent tetrahedron
count at this case the spheres consist of hard magnetic material and the intersected cube
of soft magnetic material ,approximately 30 percent of the total volume is replaced by
spheres. The geometry is high density close packed spheres, all spheres have uniform sizes
(r=15nm).

Conclusion

The hard magnetic material switched to soft magnetic, so the intersected cube becomes
soft. There is some di�erence over all simulations especially between simulation 4 with
350k tetrahedrons and 6 with 1.4 million elements (tetrahedrons). At these cases it's
obvious that the accuracy also in�uences the calculations of (BH)max. The BH-loop with
highest accuracy now hit's the x-axis beneath 0.25, all other curves clearly hit the x-axis
with an value over 0.25. Nano composite magnets always consist of hard and soft magnetic
phases, which means that the solver has to compute sti� systems, it leads to the problem
that one part of the equation is changing fast and the other part is changing slow. At these
group of simulations almost all volume of the cube consist of soft magnetic material. It's
�gured out if smaller step sizes of the mesh will improve the calculation accuracy and all
converge to the same value. At this attempt spheres are allowed to touch another sphere.
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6.3 High density loose packed spheres

This name has nothing to do with the real dense (P) of packed spheres from chapter 3 only
with the alignment of those spheres.
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Figure 6.15: Top view - cut through the cube with high density loose packed spheres, all
spheres are stacked together but each sphere is separated and don't touches another sphere.
According to this fact they have di�erent sizes, the volume ratio is still the same like at all
other simulations of chapter 6, all spheres are limited to the maximum size (r=15nm).

Explanation

At this attempt all spheres are dense packed but all they don't touch another one. Because
of the fact that all spheres are dense packed together but with the requirement don't touch
another sphere the sizes are not uniform. At this run all spheres are checked if they
intersect with another sphere and also if the minimum distance of meshing is maintain.
If they intersect with another one the size is shorten as long as they don't touch other
spheres. All of those requirements lead to the problem to have the same volume ratios like
at previous attempts and the usage of more spheres, so at this attempt 48 spheres are used
with di�erent sizes to achieve the same total volume ratio like at the previous runs. All
spheres have di�erent sizes with less than the radius of 15 nm. The result of this attempt
shows that there is no response to the density how spheres are packed together as long as
the area of the soft magnetic is small and the distance between those spheres is enough.
Alignment of those spheres is still a problem because of the problem to accomplish the
same volume ratio and simple requirements leads to use more spheres than to the contrary
of previous formations.
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6.3.1 High density loose packed spheres - Mesh of simulation 1 (57k)

(a) Mesh of spheres. (b) Mesh of the intersected cube.

Figure 6.16: Shows the two meshes used for the �rst simulation of high density loose packed
spheres with lower mesh quality, this mesh is used to compare the computed results.

6.3.2 High density loose packed spheres - Mesh of simulation 4 (326k)

(a) Mesh of spheres. (b) Mesh of the intersected cube.

Figure 6.17: Shows the two meshes used for the fourth simulation of high density loose
packed spheres with higher mesh quality, this mesh is used to compare the computed
results.
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6.3.3 High density loose packed spheres - BH-loops of �rst parameter
set (par1) (Spheres=48;max Radius=15nm)

At these simulations the geometry of high density loose packed spheres is used. The
intersected cube consist of hard magnetic material and 30 percent of space is replaced by
soft magnetic material with spheres. All spheres are close together but separated.
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Figure 6.18a: Demagnetization curve for a nano composite magnet with volume fraction
of soft about 0.3, soft sphere size with the max. r = 15nm and max mesh size by 4.5nm.
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Figure 6.18b: Demagnetization curve for a nano composite magnet with volume fraction
of soft about 0.3, soft sphere size with the max. r = 15nm and max mesh size by 2.05nm.

Figure 6.18a up to 6.18b show some BH-loops of high density loose packed spheres
with the �rst parameter set and some signi�cant points where these curves di�er because
of di�erent amount of calculation elements at the mesh.
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6.3.4 High density loose packed spheres - Comparison of all BH-loops
within the �rst parameter set (par1) (Spheres=48;max Radius=15nm)

At this attempt most of the volume consist of hard magnetic material and approximately
30 percent of the cube is replaced by spheres which consist of soft magnetic material. At
�gure 6.19 all computations are compared with di�erent mesh parameters to �gure out the
best parameters with low computation time but and high accuracy.
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Figure 6.19: Comparison of all BH-loops within parameter set 1 with di�erent tetrahedron
count at this case the spheres consist of soft magnetic material and the intersected cube
of hard magnetic material, approximately 30 percent of the total volume is replaced by
spheres. The geometry is high density loose packed spheres. They all have none uniform
sizes with the maximum radius of 15nm.

Conclusion

At these simulations it's obvious that the grid size in�uences the accuracy of computing
�nite elements, but with higher tetrahedron count there is only less di�erence between
those simulations especially from simulation 5 and simulation 6 the behaviour is nearly
the same. The value of (BH)max becomes better in comparison to �gure 6.5 because of
the higher coercive force (HC) In comparison to further simulations it's clear that not
only the volume ratio in�uences the behaviour of magnets also the geometry e�ects the
computed BH-loops. At this group of simulations it's obvious that with smaller step size for
meshing the computations converge, just for example the simulation 5 with parameters of
maxsize=1.85 / minsize=0.5 and simulation 6 with maxsize=1.5 / minsize=0.5 are nearly
the same even when the amount of elements for computation is doubled.
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6.3.5 High density loose packed spheres - BH-loops of second parameter
set (par2) (Spheres=48; max Radius=15nm)

At these simulations the geometry of high density loose packed spheres is used. The
intersected cube now consist of soft magnetic material and 30 percent of space is replaced
by hard magnetic material.All spheres are close together but separated.
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Figure 6.20a: Demagnetization curve for a nano composite magnet with volume fraction
of hard about 0.3, hard sphere size with the max. r=15nm and max mesh size by 4.5nm.
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Figure 6.20b: Demagnetization curve for a nano composite magnet with volume fraction
of hard about 0.3, hard sphere size with the max. r=15nm and max mesh size by 2.05nm.

Figure 6.20a up to 6.20b show some BH-loops of high density loose packed spheres with
the second parameter set and some signi�cant points where these curves di�er because of
di�erent amount of calculation elements at the mesh.
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6.3.6 High density loose packed spheres - Comparison of all BH-loops
within the second parameter set (par2) (Spheres=48;max Ra-
dius=15nm)

At this attempt most of the volume consist of soft magnetic material and approximately
30 percent of the cube is replaced by spheres which consist of hard magnetic material. At
�gure 6.21 all computations are compared with di�erent mesh parameters to �gure out the
best parameters with low computation time and high accuracy.
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Figure 6.21: Comparison of all BH-loops within parameter set 2 with di�erent tetragon
count at this case the spheres consist of hard magnetic material and the intersected cube
of soft magnetic material,approximately 30 percent of the total volume is replaced by
spheres. The geometry is high density loose packed spheres, all spheres have none uniform
sizes (maximum r=15nm).The BH-loops like to refer to soft magnetic material.

Conclusion

From the parameter set 1 to parameter set 2 the hard shell switched to soft soft magnetic,
the cube now consists almost of soft magnetic material. At this attempt 70 percent of
the total volume is soft magnetic material and 30 percent hard magnetic. There is no big
di�erence between all computations with di�erent accuracy and tetrahedron count, also the
value of (BH)max is not e�ected by the grid size and accuracy of these simulations. They
hit the x-axis around the value of 0.35. All simulation seems to be equal even with higher
amount of computation elements, it's because of the fact that most of the volume consists
of soft magnetic material which also in�uences the accuracy of solving �nite elements,
because of the fact that the program still has to solve sti� equation systems but with low
in�uence of hard magnetic materials and those properties.
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6.3.7 What's the best mesh size ?

According to previous simulations with di�erent mesh sizes, the best results can be achieved
with following parameters. The max step of the mesh at every computation should not be
greater than 1.85nm to achieve high accuracy and not smaller than 1.3nm because of the
high amount of tetrahedrons and less e�ect to the accuracy. At all simulations the min
step size of the grid is always the same like 0.5nm because this value leads to a �ne mesh at
the spheres and is still smaller as any used radius. If the amount of tetrahedrons is beyond
2.5 millions elements there is no real improvement to the accuracy of all computations.
All simulations where the models are used to compute a row of di�erent simulations the
maximum mesh step size of 1.6 nm is used because the accuracy is high enough with the
awareness to save some resources and computation time.
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Figure 6.22: Comparison of di�erent meshes at the same model (8.1), all computations
are nearly equal so there is no improvement below the maximum step size of the grid
with 1.5nm it only leads to higher computation time. This kind of model is often used
at several computations, but at those models which are also used to calculate a row of
computations a little bit greater max step size(1.6nm) is allowed because of really time
and resources exhausted computations. This �gure also shows that the accuracy because
of di�erent material properties is still no problem with these step sizes (max. 1.5nm / min
0.5nm) and below, so there is no change at it. At the green curve the cube consist of soft
magnetic material and spheres of hard magnetic material, this case is often a problem to
the accuracy and there is no big change at the computed curves.



Chapter 7

Comparison of high close/high
loose/low-density packed spheres

7.1 Comments to the simulations

In this chapter there is a short summary of chapter 6 and 3. At the start of chapter 6
it wasn't clear how much simulations are to do for all the di�erent cases and how hard
it can be to align the spheres for the simulations. Another problem was meshing these
shapes, because meshing requires that the geometries like spheres and the cube are not
intersected and there are two main options to common the shapes or to cut them. Cutting
the spheres means, u also have to rescale them and make the radius smaller so that those
sphere don't touch them, on the other side, if u common two spheres this geometry will
in�uence the behaviour of the BH-loop negatively. At the moment the �rst simulations
show that it is still a lot better for the BH-loops and behaviour to make more loose packed
spheres than close packed spheres, on the opposite more spheres (or any other geometry
object), leads to more meshes even with same limits. Meshing shapes is also a problem
if those shapes don't have enough space between them, because if two sphere are really
close together the algorithm would fail to mesh them due the fact of overlapping elements.
So there are only a few alignments to reach decent densities. This problem of a minimum
distance between those shapes also leads to lower densities of packing spheres together.
One another problem because of chapter 3 there is always a limitation because of the used
geometry to cover space by any geometry with uniform sizes. One another way is to allow
multi sized spheres and multiple sizes for the simulations or another alignment to achieve
higher denses. These simulations also show that it is recommended to have more spheres
with soft magnetic material which are not connected than bigger spheres or wide areas
which leads to bad results at the computed BH-loops.
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7.2 Comparison of di�erent geometries

At this chapter all computed BH-loops from chapter 6 with di�erent geometries are com-
pared. At the moment there are just three kinds of used geometries like to separate all
spheres well, to common them or to cut them if spheres are close together. At these simu-
lations the fraction of the volumes which is replaced by spheres is always the same, spheres
within the cube replace approximately 30 percent of the total space.
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Figure 7.1: Comparison of all di�erent geometries used in this work with approximately
the same volume ratios, all spheres within the cube replace approximately 30 percent of
the total space, the size of spheres is almost equal, except the sizes used at high density
loose packing because all spheres are limited to radius of 15nm.
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7.2.1 Comparison of low/high close/high loose - packed spheres (par1)

At all these attempts most of the volume consists of hard magnetic material and approxi-
mately 30 percent of the cube is replaced by spheres which is soft magnetic material. At
�gure 7.2 all computations are compared with the best accuracy to observe some di�erences
because of the geometry and resulting behaviour at the BH-loops.
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Figure 7.2: Comparison of low/high close/high loose packed spheres almost all space of
the cube consists of hard magnetic material and spheres within the cube of soft magnetic
material. Each alignment leads to own BH-loop, at all simulation approximately 30 percent
of the total volume is replaced by soft magnetic material (spheres). This �gure also shows
that the alignment and geometry is really important.

Conclusion

Figure 7.2 shows that distribution of soft magnetic material is really important for the
resulting BH-loops even though the volume ratio is nearly the same. These groups of
attempts are done so that approximately 30 percent of the total volume consists of soft
magnetic material. Distribution of soft magnetic material is really important, at simulation
2 all spheres are packed together and the result is the worst case of all computations. At
simulation 1 all spheres are well separated, at this simulation all spheres have the radius
of 15nm same at simulation 2. Simulation 3 shows the best behaviour, all spheres are
still dense packed together but each is checked if they touch another one, spheres which
intersect are shorten as long as they don't touch another one. It's the best result of all
simulations another reason why perhaps bigger areas of soft magnetic material in�uences
the behaviour of BH-loops negatively.
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7.2.2 Comparison of low/high close/high loose - packed spheres (par2)

At all these attempts most of the total volume consists of soft magnetic material and
approximately 30 percent of the cube is replaced by spheres which is hard magnetic mate-
rial. At �gure 7.3 all computations are compared with the best accuracy to observe some
di�erence because of the geometry and resulting behaviour at the BH-loops.
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Figure 7.3: Comparison of low/high close/high loose packed spheres almost all space of
the cube consist of soft magnetic material and spheres within the cube of hard magnetic
materials. Each alignment leads to nearly same BH-loop's because of the fact that almost
70 percent of the total volume is soft magnetic material but only 30 percent consist of
hard magnetic material. This �gure also shows that the alignment and geometry is really
important.

Conclusion

Figure 7.3 shows that high usage of soft magnetic materials negates the in�uence of the
geometry and hard magnetic material nearly to zero. All simulations hit the x-axis around
0.4. So there is nearly no in�uence by the geometry and the hard magnetic material perhaps
due the fact that most of cube is covered by soft magnetic material. Simulation 3 still has
the worst behaviour and the lowest value of HC which response to a bad (BH)max, 30
percent of the total volume consist of hard magnetic material (spheres). Nano composite
magnets always consist of hard and soft magnetic phases, which means that the solver
has to compute sti� systems, which leads to the problem that one part of the equation is
changing fast and the other part is changing slowly. It also means at this kind of simulations
the low usage of hard magnetic material in�uences the sti� systems less.



Chapter 8

In�uence of soft magnetic material

8.1 E�ect of soft magnetic material at equal volume parts

At this chapter there are two simulations done, one simulation is where the hard magnetic
material is at the outside and the soft magnetic material is inside. The other simulation is
where the hard magnetic material is inside of the cube and soft magnetic material is at the
outside. This pair of simulation is done to �gure out, what's the best way to replace hard
magnetic material by soft magnetic material,or in other words is there any big di�erence
between those two possible alignments at the BH-loop. At this two simulations there
is used the hexagonal grid where each sphere doesn't touch another sphere, the sphere
within the cube replaces 47 percent of the space of the cube, where the rest of the volume
is 53 percent. Figure 8.1 shows that each sphere is separated from each other sphere.
Computations are not normalized at this chapter so the volume and material properties
are respected.

(a) Mesh of the cube and spheres.

100nm

R10nm

(b) Mesh of the spheres.

Figure 8.1: Shows the geometry of the cube and spheres with hexagonal lattice each sphere
is separated from each other, hexagonal lattice gives the highest dense of sphere packing
with equal sized spheres, at this case 47 percent of the volume is replaced by spheres all
spheres have the same size with radius of 10nm and inside the cube there are appropriately
135 spheres.
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8.1.1 Computed BH-loops with 135 spheres and grain size with radius
of 10nm (volume ratio of intersected cube/spheres = 53/47)

At these simulations the geometry of hexagonal grid is used. The volume of the cube
and spheres are nearly equal, these simulations are done to show the e�ect of di�erent
alignments because by the soft magnetic material.
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Figure 8.2: BH-loop of �rst attempt (par1) at this simulation the soft magnetic material
(spheres) is separated by hard magnetic material (cube), the volume ratio is nearly equal
of these two shapes, but the HC is doubled in comparison to the second attempt (par2).
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Figure 8.3: BH-loop of second attempt (par2) at this simulation the hard magnetic material
(spheres) is separated by soft magnetic material (cube), the volume ratio is nearly equal
of these two shapes, but the HC is divided in comparison to the �rst attempt (par1).

Figure 8.2 and �gure 8.3 show that there is a big di�erence at the response BH-loops.
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8.1.2 Comparison of computed BH-loops with 135 spheres and grain size
with radius of 10nm (volume ratio of intersected cube/spheres =
53/47)

At this attempt most of the volume is divided into equal parts so one part consists of hard
magnetic material and the other part of soft magnetic material, it was possible to replace
approximately 46 percent of the cube by spheres which consist at one simulation of soft
magnetic material(�gure 8.2) and another simulation by hard magnetic material (�gure
8.7). At �gure 8.4 those two simulations are compared.
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Figure 8.4: Comparison of computed BH-loops with hexagonal lattice, almost 53 percent
of the cube is replaced by spheres, the blue curve shows the behaviour of the BH-loop
with composition if spheres consist of soft magnetic material and on the opposite the green
line shows the e�ect if the spheres consist of hard magnetic material.The spheres have the
radius about 10nm.

Conclusion

According to �gure 8.4 there is a big di�erence at these two BH-loops especially at the
response of the coercive force (HC) value. The curve where the hard magnetic material is
at outside and 47 percent of space about the cube is replaced by soft magnetic material
shows the best behaviour in comparison to the opposite, where the spheres consist of hard
magnetic material, the (BH)max is approximately doubled in comparison to the curve with
the second parameter set. All two computations are weighted with material parameters,
also these two simulations show that wide areas of soft magnetic materials in�uence the
HC negatively and also the response to the BH-loops, so it's recommended to prevent big
areas of soft magnetic material and intercept them as much as possible to improve the
behaviour of nano composite magnets. These requirements make it really hard to �nd
any geometry where as much as possible soft magnetic material is used but all areas of
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soft magnetic material are disconnected from each other with the use of hard magnetic
materials. One another fact about those two curves is that the value of the coercive force
(HC) is nearly doubled like maximum energy product (BH)max with another alignment
of the soft magnetic material. At the simulation with the �rst parameter set (par 1) the
HC is 1.2 and the simulation with the second parameter set (par 2) the HC is 0.55 which
means that the case where the hard magnetic material is outside is still a lot better than
the opposite simulation. This two simulations are done with two di�erent mesh sizes to
�gure out if there is still any big di�erence the �rst try was with 1.3 million tetrahe-
drons (maxsize=1.5, minsize=0.5) and the second mesh was with 2.5 million tetrahedrons
(maxsize=1.25, minsize=0.5) the result of these two computations is equal.

8.2 E�ect of unequal volume ratios

At these next two simulations there is as much possible volume replaced by spheres which
don't touch them. At this attempt it was possible to replace almost 63 percent of space
by spheres which all have the same dimensions, some spheres are cut which hit boundary
of the cube. This attempt is done to show the e�ect if the volume of spheres and the cube
are not equal. Figure 8.5 shows that all spheres are well separated from each other, this
�gure also shows that spheres are cut which intersect the boundary of the cube to replace
as much volume as possible volume by spheres.

(a) Mesh of the cube and spheres.

100nm

1
0
0
n
m

R10nm

(b) Mesh of spheres.

Figure 8.5: Shows the geometry of the intersected cube and spheres with hexagonal lattice
each sphere is separated from each other, hexagonal lattice gives the highest dense of sphere
packing with equal sized spheres at this case almost 60 percent of the volume is replaced
by spheres. At these simulations there are 294 spheres used with the radius of 10nm.

This simulation are done to show the e�ect if the volume ratio of the hard magnetic and
soft magnetic part is not equal, another goal was to replace as much space as possible by
spheres. Figure 8.7 and �gure 8.6 show that it is possible to achieve the same (BH)max

values with di�erent volume ratios but with the awareness of the right geometry. So it is
possible to decrease the amount of hard magnetic material due the fact that it is still a lot
better to separate soft magnetic material by hard magnetic material.
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8.2.1 Computed BH-loops with 294 spheres and grain size of radius with
10nm (volume ratio of intersected cube/spheres = 40/60)

At these simulations the geometry of hexagonal grid is used. The volume of the cube and
spheres are not equal, these simulations are done to show that there are some possibilities
to achieve same (BH)max values.
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Figure 8.6: BH-loop of �rst attempt (par1) at this simulation the soft magnetic mate-
rial(spheres) is separated by hard magnetic material(cube), the volume ratio is not equal
of these two shapes, but all two simulations achieve nearly same (BH)max values.
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Figure 8.7: BH-loop of second attempt (par2) at this simulation the hard magnetic mate-
rial(spheres) is separated by soft magnetic material(cube), the volume ratio is not equal of
these two shapes, but all two simulations achieve nearly same (BH)max values.

Figure 8.6 and �gure 8.7 show that there is a big di�erence at the response BH-loops.
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8.2.2 Comparison of computed BH-loops with 294 spheres and grain
size of radius with 10nm and volume ratio of 40/60

At this attempt most of the volume is divided into two parts so one part consist of hard
magnetic material and the other part of soft magnetic material. Is was possible to replace
approximately 63 percent of the cube by spheres which consist at one simulation of soft
magnetic material (�gure 8.6 ) and another simulation of hard magnetic material (�gure
8.7). At �gure 8.8 those two simulations are compared.
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Figure 8.8: Comparison of computed BH-loops with hexagonal lattice, almost 60 percent
of the cube is replaced by spheres, the blue curve shows the behaviour of the BH-loop with
composition where spheres consist of soft magnetic material and on the opposite the green
line shows the behaviour if the spheres consist of hard magnetic material.

Conclusion

According to �gure 8.6 and 8.7 the best behaviour is diverse, because at the �rst computa-
tion 8.6 almost 60 percent of the nano composite magnet consist of soft magnetic material
which are intersected by hard magnetic material (40 percent), this composition results to a
little higher (BH)max value but to worse coercive force (HC). On the opposite the (BH)max

of the second simulation is slightly worse but the curve hits the x-axis with a higher HC

value due the usage of high amount of hard magnetic material. The grain boundaries of the
soft magnetic material just in�uence the shifting point of all BH-loops. This comparison
also shows that it is possible to achieve nearly same (BH)max values with the usage of less
hard magnetic material and high usage of soft magnetic material. At these two simulations
spheres have equal distances to each other sphere. Just to mention at �gure 8.6 the curve
hits x-axis around 1.1 and at �gure 8.7 the curve hits the x-axis around 1.4, so 20 percent
less hard magnetic material decreases the value of HC only about 20 percent.



Chapter 9

In�uence of grain size and volume
ratio

9.1 Description

At this chapter the in�uence of the grain size and volume ratio is observed. All simulations
are computed with the following parameters for the mesh with max step size = 1.6nm and
min size step=0.5, to achieve high accuracy but with less computation time in awareness
of the computation time. According to the following simulations the grain size of the soft
magnetic materials e�ects the value of HC a lot. At this case it is novelty that the grain
size of soft phase is observed in complex models (great equation systems). At all next
simulations the intersected cube consists of hard magnetic material, where some volume is
replaced by spheres which consist of soft magnetic material. All simulations achieve similar
(BH)max values (maximum energy product), some values are above or beneath the average
value but at all simulations the coercive force (HC) di�ers due the usage of di�erent grain
sizes and volume ratios. The value of HC is decreasing at all computations as well with
increasing the amount of α− Fe, but the value of the energy product ((BH)max) is similar
at all simulations. It is recommend to achieve a high coercive force (HC) because of the
problem that with increasing the surrounding temperature of those magnets the coercive
force also decreases which leads to a bad energy product. So to gain a high coercive force
(HC) and energy product ((BH)max) is one of the most important goals of designing super
magnets.

Grain size. sim1 sim2 sim3 sim4 sim5

10nm 9% 12% 27% 33% 58% α− Fe (usage of Iron in percent)
12.5nm 8% 19% 29% 32% 60% α− Fe (usage of Iron in percent)
15nm 7.5% 18% 25% 34% 62% α− Fe (usage of Iron in percent)

Table 9.1: This table gives a short overview about the most important parameters which
are used in this chapter for all simulations. There are three di�erent grain sizes (soft
magnetic material) used and several volume fractions at the soft and hard magnetic phase.
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9.2 In�uence of grain size and volume ratio

At all these simulations the in�uence of soft magnetic material is observed especially the
e�ect of the grain size and volume ratio. From �gure 9.1 up to 9.3 all simulations are com-
puted with three di�erent grain sizes like 10nm,12.5nm,15nm and di�erent volume fractions
at the soft magnetic material. Some volume of the cube is replaced by spheres which consist
of soft magnetic material, all spheres are separated by hard magnetic material.

R
10nm

(a) Fraction 9% (b) Fraction 12% (c) Fraction 27% (d) Fraction 33% (e) Fraction 58%

Figure 9.1: Top view - cut through the intersected cube (hard magntic material) which
shows the spheres (soft magnetic material) with the grain size of radius = 10nm and
di�erent volume fractions due to the the usage of di�erent amount of soft magnetic material.

R
12.5nm

(a) Fraction 8% (b) Fraction 19% (c) Fraction 29% (d) Fraction 32% (e) Fraction 60%

Figure 9.2: Top view - cut through the intersected cube (hard magntic material) which
shows the spheres (soft magnetic material) with the grain size of radius = 12.5nm and
di�erent volume fractions due to the usage of di�erent amount of soft magnetic material.

(a) Fraction 7.5%

R15nm

(b) Fraction 18% (c) Fraction 25% (d) Fraction 34% (e) Fraction 62%

Figure 9.3: Top view - cut through the intersected cube(hard magntic material) which
shows the spheres (soft magnetic material) with the grain size of radius = 15nm and
di�erent volume fractions due to the usage of di�erent amount of soft magnetic material.
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9.2.1 Soft magnetic material with grain size of r=10nm and di�erent
volume ratios

At this group of simulations, all spheres within the cube have a grain size of 10nm. All
simulations are computed with di�erent amount of iron (α−Fe). The �st simulation starts
with about 9 percent iron and the last simulation is computed with 59 percent.
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Figure 9.4: Comparison of di�erent BH-loops with equal sized spheres (radius=10nm) and
several counts, at all soft simulations di�erent amount of soft magnetic material is used.
The intersected cube consists of hard magnetic material and spheres within the boundary
are soft magnetic material. At the last simulation with the highest amount of iron the
hexagonal lattice is used because of the limitation of random dense packing with equal
spheres, all computations achieve nearly same (BH)max values (higher than 500kJ/m3)
but with a higher ratio of soft magnetic material the value of HC is decreasing

Conclusion

According to �gure 9.4 all computed graphs hit the x-axis between 1.6 and 1.2, and it's
obvious that the grain size of the soft magnetic material in�uences the BH-loop a lot
especially the value of HC. The value of (BH)max of all computations with grain size
of 10nm is especially the best in comparison to higher grain sizes. All values are not
normalized in this graph because the so �ux density (B) is shown and not the magnetization
(M), so the volume ratio of the soft and hard magnetic part is respected, which leads to
the point that all curves start with di�erent y-values because of the di�erent amount of
soft magnetic material. The value of the coercive force (HC) is mainly e�ected by the grain
size of the soft magnetic material but as well the volume ratio of soft and hard magnetic
material is still important.
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9.2.2 Soft magnetic material with grain size of r=12.5nm and di�erent
volume ratios

At this group of simulations, all spheres within the cube have the grain size of r=12.5nm.
All simulations are computed with di�erent amount of iron(α − Fe). The �st simulation
starts with about 8 percent iron and the last simulation is computed with 60 percent.
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Figure 9.5: Comparison of di�erent BH-loops with equal sized spheres (radius=12.5nm)
and several counts, at all soft simulations di�erent amount of soft magnetic material is
used. The intersected cube consists of hard magnetic material and spheres within the
boundary are soft magnetic material. At the last simulation with the highest amount of
iron the hexagonal lattice is used because of the limitation of random dense packing with
equal spheres, all computations achieve nearly same (BH)max values (less than 500kJ/m3)
but with a higher volume ratio of soft magnetic material the value of HC is decreasing.

Conclusion

According to �gure 9.5 all computed graphs hit the x-axis between 1.4 and about 0.85,
and it's obvious that the grain size of the soft magnetic material in�uences the BH-loop a
lot especially the value of HC. The value of (BH)max of all computations with grain size
of 12.5nm is average in comparison to other simulations. All values are not normalized
in this graph because the �ux density (B) is shown and not the magnetization (M), so the
volume ratio of the soft and hard magnetic part is respected, which leads to point that
all curves start with di�erent y-values because of the di�erent amount of soft magnetic
material. The value of the coercive force (HC) is mainly e�ected by the grain size of the
soft magnetic. All computed curves are shifted in the middle in comparison to �gure 9.4
and 9.6 due the usage of a average grain size at the soft magnetic material.
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9.2.3 Soft magnetic material with grain size of r=15nm and di�erent
volume ratios

At this group of simulations, all spheres within the cube have the grain size of r=15nm.
All simulations are computed with di�erent amount of iron(α − Fe). The �st simulation
starts with about 8 percent iron and the last simulation is computed with 63 percent.
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Figure 9.6: Comparison of di�erent BH-loops with equal sized spheres (radius=15nm) and
several counts, at all soft simulations di�erent amount of soft magnetic material is used.
The intersected cube consists of hard magnetic material and spheres within the boundary
are soft magnetic material. At the last simulation with the highest amount of iron the
hexagonal lattice is used because of the limitation of random dense packing with spheres,
all computations achieve nearly same (BH)max values (less than 500kJ/m3) but with higher
volume fraction of soft magnetic material the value of HC is decreasing.

Conclusion

According to �gure 9.6 all computed graphs hit the x-axis between 1.2 and 0.8, and it's
obvious that the grain size of the soft magnetic material in�uences the BH-loop a lot
especially the value of HC. The value of (BH)max of all computations with grain size
of 15nm is even the worst in comparison to other simulations. All values are not
normalized in this graph because the �ux density (B) is shown and not the magnetization
(M), so the volume ratio of the soft and hard magnetic part is respected, which leads to
point that all curves start with di�erent y-values because of the di�erent amount of soft
magnetic material. The value of the coercive force (HC) is mainly e�ected by the grain
size of the soft magnetic material. All computed curves are shifted in right direction in
comparison to �gure 9.4 and 9.5 due the usage of a rough grain size.
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9.2.4 Comparison of (BH)max and corresponding HC values

Short summary about those simulations all important data are collected from each simula-
tion like grain size, maximum energy product ((BH)max) and coercive force (HC) to show
the correlation between all parameters and variables. The grain size of the soft magnetic
material is really important to the coercive force (HC) like the amount of α−Fe. The value
of (BH)max is increasing if the amount of α−Fe is increased but at the opposite the value
of HC is decreased because of higher amount of soft magnetic material. At all simulations
smaller grain sizes of α− Fe lead to higher HC values and higher amount of soft magnetic
material evaluates the maximum energy product ((BH)max)..
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9.2.5 Summary
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(a) Comparison of all BH-loops
with approximately 8% α− Fe.
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(b) Comparison of all BH-loops
with approximately 60% α− Fe.

Figure 9.7: This two �gures show the e�ect of di�erent grain sizes even with less amount
of Iron the hysteresis loop is crucial e�ected by the grain size of the soft magnetic material.
60% of α−Fe are natural used at Nd-Fe-B magnets, so the strength of those super magnets
can be evaluated by smaller grain sizes and maybe some alloys. The value of HC is crucial
to the value of the maximum energy product ((BH)max) and the associated temperature
dependency. Smaller grain sizes lead to less temperature dependency. Maybe there is a
grain size where there is no negative e�ect to the proper hysteresis loops especially with
the usage of higher amount of Iron (α − Fe). Smaller grain sizes lead to higher shifting
points where the curves are starting to hit the x-axis.

According to �gure 9.4, 9.5 and 9.6, the grain size has an serious impact on the be-
haviour of all BH-loops and especially to the value of HC and the associated maximum
energy product (BH)max. So there are some possibilities how to control the behaviour of
the hysteresis loop. The best way to improve the performance data of super magnets is to
use smaller grain sizes for the soft magnetic part. It also includes that the area of all soft
phases is really small in comparison to the hard magnetic material, so this phase must split
the areas of all soft phases as much as possible. All simulations achieve di�erent (BH)max

values. The fraction of the soft phase is not imported as long as the value of HC is high
enough. Nearly all simulations with the grain size of 10nm achieve better HC values than
simulations with the grain of 15nm, because all hit the x-axis above 1. It's also obvious
that the ratio of soft magnetic material in�uence the value of the coercive force HC, but
the grain size of the soft phase in�uences the behaviour a lot more. At the �rst simulation
and the usage of only 8 percent iron with the grain size of 10nm the curve hits the x-axis
about 1.55 in comparison to the nearly same amount of iron the simulation with a rougher
grain size of 15nm the x-axis get hit by the value of 1.2. The goal must be to use smaller
grain sizes so the in�uence of the soft phase decreases like the temperature dependency
and it's possible to use more iron which reduces the cost of super magnets.



Chapter 10

Compendium and prospects

This work is about simulation nano composite magnets. Super magnets always consist of
two phases like the hard magnetic phase and on the opposite the soft magnetic part. The
goal must be to use as much soft magnetic material as possible to decrease the overall costs
but with less disadvantages. There are some simulations in this work to show the e�ect
of soft magnetic material with di�erent geometries and volume ratios. In all simulations
the geometry and the grain sizes of this material are really important. Beside the problem
of the right usage of the soft phase also some chapters about the main issue, computing
�nite elements and basic principles about nano composite magnets are shown. There are
a lot of di�erent problems which make it di�cult to replace hard magnetic material by
soft magnetic material especially the geometry and grain size of the soft phase is really
important by this way. The problem of sphere packing mentioned in this work is the main
issue of replacing space by any geometry body. There is often a limitation of replacing space
which makes it impossible to replace any volume as far as wanted, it even becomes harder if
there is any requirement like spheres or shapes are not allowed to touch another shape. In
this work there are also some simulations to �gure out what's the best way to replace hard
magnetic material by soft magnetic material, like to avoid wide areas of soft phases. One
last point in this work is to show the e�ect with di�erent grain sizes and volume ratios of
the soft magnetic phase. The aim of new super magnets must be to decrease the in�uence
of the soft magnetic phase, it's possible to achieve the same energy product (BH)max with
di�erent grain sizes and di�erent volume fractions which in�uence the coercive force (HC)
too. This value must be in focus at most applications because a higher (HC) value means
that super magnets are still powerful if the surrounding temperature is high. One way to
decrease the temperature dependency is to use smaller grain sizes for the soft magnetic
phase which increase the value of (HC). It is also possible to use a geometry where the
in�uence of the soft magnetic material is nearly negated. This study also shows the with
the awareness of the right alignment of the soft magnetic phase the behaviour of nano
composite magnets can be in�uenced in a positive way especially if the volume fraction is
the same. There are also some simulations to show that smaller grain sizes about the soft
magnetic material evaluates the strength of super magnets positive.

73



Bibliography

[1] Close-packing of equal spheres. http://readtiger.com/wkp/en/Close-packing_of_equal_spheres.
http://readtiger.com, last visited: June 2, 2013.

[2] History of magnetism. http://www.gitam.edu/eresource/Engg_Phys/semester_2/magnetic/intro.htm.
GITAM, Department of Engineering Physics, last visited: June 2, 2013.

[3] Manufacturer of high-performance rare earth magnets, ndfeb, smco. the sta-
ble production and supply of high-quality, high-precision rare earth magnet.
http://www.shinetsu-rare-earth-magnet.

[4] Nanocomposite magnets. http://www.ifm.eng.cam.ac.uk/research/cip/hiwi/. Insti-
tute for Manufacturing, Dept. of Engineering , last visited: June 2, 2013.

[5] Hicham Badri, Mohammed El Hassouni, and Driss Aboutajdine. Kernel-based lapla-
cian smoothing method for 3d mesh denoising. In Abderrahim Elmoataz, Driss Mam-
mass, Olivier Lezoray, Fathallah Nouboud, and Driss Aboutajdine, editors, Image and

Signal Processing, volume 7340 of Lecture Notes in Computer Science, pages 77�84.
Springer Berlin Heidelberg, 2012. ISBN 978-3-642-31253-3.

[6] Stephen B. Castor. Rare Earth Deposits of North America, volume 58. Resource
Geology, Nevada Bureau of Mines and Geology, University of Nevada, Reno, Nevada,
USA, November 2008. DOI:10.1111/j.1751-3928.2008.00068.x.

[7] Michael Diggles. Rare earth elements critical resources for high technology.
http://pubs.usgs.gov/fs/2002/fs087-02/. U.S. Geological Survey, last visited: June
2, 2013.

[8] Peter Fleischmann. http://www.iue.tuwien.ac.at/phd/�eischmann/node25.html. TU
Vienna, last visited: June 2, 2013.

[9] Carl F. Gauss. Besprechung des buchs von l. a. seeber: Untersuchungen über die
eigenschaften der positiven ternären quadratischen formen usw. Göttingsche Gelehrte
Anzeigen, 2:188�196, 1831. 1876.

[10] J.P. Gregoire, C. Rose, and B. Thomas. Direct and iterative solvers for �nite-element
problems. Numerical Algorithms, 16(1):39�53, 1997. http://dx.doi.org/10.1023/A

[11] Thomas C. Hales. The sphere packing problem. Journal of Computational and Applied

Mathematics, 44:41�76, November 1992.

74



BIBLIOGRAPHY 75

[12] Thomas C. Hales. A proof of the kepler conjecture. Math. Intelligencer, 16:47�58,
1994.

[13] Sabine Hoe�nger Josef Fidler, Thomas Schre� and Maciej Hadjuga. Recent de-
velopments in hard magnetic bulk material. Journal of Physics:Condensed Matter,
16(2):455�469, January 2004. DOI:10.1088/0953-8984/16/5/007.

[14] M. Jurczyk. Nanocomposite Nd-Fe-B type magnets. Journal of Alloys and Com-

pounds, 299:283�286, November 2000.

[15] Professor Emeritus Karl J.Strnat. Modern permaneten magnets for application in
electro-technology. Journal of Physics:Condensed Matter, 78(6):923 � 946, 1990.
DOI:10.1109/5.56908.

[16] S. Harrell M. Beals, L. Gross. Cell aggregation and sphere packing.
http://www.tiem.utk.edu/ gross/bioed/webmodules/spherepacking.htm. The insti-
tute for Environmental Modelling, last visited: June 2, 2013.

[17] T. Schre� R. W. Chantrell, J. Fidler and M. Wongsam. Micromagnetics: Finite
element. Encyclopedia of Materials: Science and Technology, pages 5651+5661, 2001.
ISBN: 0-08-0431526, http://magnet.atp.tuwien.ac.at/ts/papers/ema108005.pdf.

[18] M. Radi and S. Selberherr. Three-dimensional adaptive mesh relaxation. In Kristin
Meyer and Serge Biesemans, editors, Simulation of Semiconductor Processes and De-

vices 1998, pages 193�196. Springer Vienna, 1998. ISBN 978-3-7091-7415-9.

[19] Daniel Rypl. Mesh quality. http://mech.fsv.cvut.cz/~dr/papers/Thesis/node23.html.
University of Leeds, last visited: June 2, 2013.

[20] Joachim Schöberl. http://www.hpfem.jku.at/netgen/. Johannes Kepler University
Linz, last visited: June 2, 2013.

[21] Mark S. Shephard and Marcel K. Georges. Automatic three-dimensional mesh gener-
ation by the �nite octree technique. int. j. numer. meth. engng. International Journal
for Numerical Methods in Engineering, 32(4):709�749, 1991. DOI: 10.1002/nme.4503.

[22] Jonathan Richard Shewchuk. What is a good linear element ? interpolating,
conditioning and quality measure. University of California at Berkeley,Berkeley.
http://www.cs.berkeley.edu/~jrs/papers/elem.pdf.

[23] Ralph Skomski and J.M.D.Coey. Giant energy product in nanostructed two-phase
magnets. Journal of Physics:Condensed Matter, 48(24):15812�15816, November 1993.

[24] Mysid Sl�ea. Unstructed grid. http://commons.wikimedia.org/wiki/File:Unstructured_grid.svg.
Wikipedia, last visited: June 2 2013.

[25] Wayne Storr. Electronics tutorial about magnetic hysteresis. http://www.electronics-
tutorials.ws/electromagnetism/magnetic-hysteresis.html. Basic Electronics Tutorials,
last visited: June 2, 2013.



BIBLIOGRAPHY 76

[26] George G. Szpiro. Kepler's conjecture : how some of the greatest minds in history

helped solve one of the oldest math problems in the world. John Wiley & Sons, Inc.,
Hoboken, New Jersey, November 2003. ISBN 0-471-08601-0.

[27] Damien; Schlenker Michel (Eds.) Tremolet de Lacheisserie, E.; Gignoux. Magnetism,

Materials and Applications, volume 24. First Springer Science + Business Media,Inc.
softcover printing, 2005, 233 Spring Street, New York, NY 10013,USA, November
2005. E-book ISBN 0-387-27063-7.

[28] Eric W. Weissenstein. Sphere packing problem.
http://mathworld.wolfram.com/SpherePacking.html. Wolfram MathWorld, last
visited: June 2, 2013.

[29] D.H. Ping Y.Q Wu and A.Inoue K. Hono, M.Hamano. Microstructal charac-
terization of an nanoncomposite /Nd-Fe-B magnet with a remaining amorphouse
phase. International Journal for Numerical Methods in Engineering, 32(4):3295�
3297, September 1999. ISSN : 0018-9464, DOI: 10.1109/TMAG.1984.1063214,
http://www.nims.jp/ap�m/ap�m/pdf/NdFeBCuNb-]JAP.pdf.



Appendices

77



78

.1 First Appendix
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Figure 1: Comparison of all BH-loops with the grain size of r=5nm and di�erent fractions
of the soft magnetic part , at 8% α− Fe up to 32% α− Fe random packed spheres
and 45% α− Fe up to 58% α− Fe hexagonal packed spheres are used.
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Figure 2: Comparison of all BH-loops with the grain size of r=7.5nm and di�erent fractions
of the soft magnetic part , at 8% α− Fe up to 32% α− Fe random packed spheres
and 45% α− Fe up to 58% α− Fe hexagonal packed spheres are used.
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Figure 3: Comparison of all BH-loops with the grain size of r=10nm and di�erent fractions
of the soft magnetic part , at 9% α− Fe up to 33% α− Fe random packed spheres
and 46% α− Fe up to 59% α− Fe hexagonal packed spheres are used.
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Figure 4: Comparison of all BH-loops with the grain size of r=12.5nm and di�erent frac-
tions of the soft magnetic part , at 8% α − Fe up to 32% α − Fe random packed
spheres and 45% α− Fe up to 60% α− Fe hexagonal packed spheres are used.
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Figure 5: Comparison of all BH-loops with the grain size of r=15nm and di�erent fractions
of the soft magnetic part , at 8% α− Fe up to 35% α− Fe random packed spheres
and 45% α− Fe up to 63% α− Fe hexagonal packed spheres are used.
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Figure 6: Comparison of all BH-loops with approximately 8% α− Fe, at this case the in-
tersected cube consists of hard magnetic material and all spheres within with soft magnetic
material, three simulations with di�erent grain sizes (r=5,7.5nm,10nm,12.5nm,15nm) are
compared with nearly same amount of volume fractions.(random packed spheres)
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Figure 7: Comparison of all BH-loops with approximately 19% α−Fe, at this case the in-
tersected cube consists of hard magnetic material and all spheres within with soft magnetic
material, three simulations with di�erent grain sizes (r=5,7.5nm,10nm,12.5nm,15nm) are
compared with nearly same amount of volume fractions.(random packed spheres)
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Figure 8: Comparison of all BH-loops with approximately 28% α−Fe, at this case the in-
tersected cube consists of hard magnetic material and all spheres within with soft magnetic
material, three simulations with di�erent grain sizes (r=5,7.5nm,10nm,12.5nm,15nm) are
compared with nearly same amount of volume fractions.(random packed spheres)
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Figure 9: Comparison of all BH-loops with approximately 33% α−Fe, at this case the in-
tersected cube consists of hard magnetic material and all spheres within with soft magnetic
material, three simulations with di�erent grain sizes (r=5,7.5nm,10nm,12.5nm,15nm) are
compared with nearly same amount of volume fractions.(hexagonal packed spheres)
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Figure 10: Comparison of all BH-loops with approximately 45% α−Fe, at this case the in-
tersected cube consists of hard magnetic material and all spheres within with soft magnetic
material, three simulations with di�erent grain sizes (r=5,7.5nm,10nm,12.5nm,15nm) are
compared with nearly same amount of volume fractions.(hexagonal packed spheres)
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Figure 11: Comparison of all BH-loops with approximately 60% α−Fe, at this case the in-
tersected cube consists of hard magnetic material and all spheres within with soft magnetic
material, three simulations with di�erent grain sizes(r=5,7.5nm,10nm,12.5nm,15nm) are
compared with nearly same amount of volume fractions.(hexagonal packed spheres)
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