High Performance
Computing

MARKUS GRUBER

LH

Problems in High Performance Computing (HPC)

Rules in High Performance Computing (Moore‘s Law, Amdahl‘s Law,
Gustafson’s Law)

Computer Architectures (CPUs, GPUs, FPGAs)

Dependency Checks in Programms

Multiprocessor Computer Systems (Shared vs. Distributed Systems)

Programming Paradigms

Parallel Programming on CPUs, GPUs

Content of
this
Presentation

DOOOOME

DOOOOME

DOOOOME

DOOOOME

What is high performance
computing?

“High Performance Computing most
generally refers to the practice of
aggregating computing power in a way
that delivers much higher performance
than one could get out of a typical
desktop computer or workstationin
order to solve large problems in science,
engineering, or business.”
https://insidehpc.com/hpc-basic-

training/what-is-hpc/

https://insidehpc.com/hpc-basic-training/what-is-hpc/

HEALTHCARE
ENGINEERING (Aircraft,
SPACE RESEARCH
, URBAN PLANNING

of High FINANCE & BUSINESS
Performance WEATHER RESEARCH

Computing MACHINE LEARNING

Applications

https://builtin.com/hardware/high-performance-computing-applications

Problems in High
Performance
Computing

LP tapped out + end of frequency scaling : :
Scaling Bound in HPC
:

uMtellCPU frends iy » http://15418.courses.cs.cmul.
edu/spring2016/lecture/whypa
rallelism/slide_033

1,000,000

Processor clock rate stop

increasing

No further benefit from

= Transistor density
@ = Clock frequency
A =Power
@ =Instruction-level parallelism (ILP)

1970 1975 1980 1985 1990 1995 2000 2005 2010

Image credit:“The free Lunch is Over” by Herb Sutter, Dr. Dobbs 2005

Surface of the Sun

Rocket Nozzle

s Energy Wall
Problem in
e PC

o
E
o
T}
s
=

1.5 107 0.5 ©0.35 025018 013 0.1 0.07

Minumum IC Feature size
in microns

P =N xalpha*C*V?*xf

Power = Number of CPUs * Active rate of Processors * Capacity * Voltagte? * Clock Frequency

= Processor vs Memory Performance P rO Ce S S O r VS
Memory Speed

https://www.extremetech.com/extreme/188776-
how-l1-and-|2-cpu-caches-work-and-why-theyre-
an-essential-part-of-modern-chips

CPU-DRAM Gap

1980: no cache in microprocessor;
1995 2-level cache

10,000,000

1,000,000

Sustained (streaming)
Memory Bandwidth is falling
behind Peak FLOPS rates,
but every other kind of
memory access is falling
behind even faster....

Bandwidth
Bound in HPC

zhttp://scl6.supercomputing.org/2
016/10/07/scl6-invited-talk-
spotlight-dr-john-d-mccalpin-
presents-memory-bandwidth-
system-balance-hpc-
systems/index.html

Different Laws in High Performance Computing

Moore‘s Law: Moore's law is the observation that of in a dense
(IC) doubles about every two years. Moore's law is an and of a historical
trend. Rather than a ,itis an linked to in
production.
Amdahl’s Law: In , Amdahl's law (or Amdahl's argument''') is a formula which
gives the theoretical in of the execution of a task at fixed that can be

expected of a system whose resources are improved

Gustafson’s Law: In , Gustafson's law (or Gustafson—Barsis's law''') gives the
theoretical in of the execution of a task at fixed execution time that can be expected
of a system whose resources are improved.

https://en.wikipedia.org/wiki/Transistor_count
https://en.wikipedia.org/wiki/Transistor
https://en.wikipedia.org/wiki/Integrated_circuit
https://en.wikipedia.org/wiki/Observation
https://en.wikipedia.org/wiki/Forecasting
https://en.wikipedia.org/wiki/Physical_law
https://en.wikipedia.org/wiki/Empirical_relationship
https://en.wikipedia.org/wiki/Wright%27s_Law
https://en.wikipedia.org/wiki/Computer_architecture
https://en.wikipedia.org/wiki/Amdahl%27s_law
https://en.wikipedia.org/wiki/Speedup
https://en.wikipedia.org/wiki/Latency_(engineering)
https://en.wikipedia.org/wiki/Workload
https://en.wikipedia.org/wiki/Computer_architecture
https://en.wikipedia.org/wiki/Gustafson%27s_law
https://en.wikipedia.org/wiki/Speedup
https://en.wikipedia.org/wiki/Latency_(engineering)

Moore’s Law

Moore's law is the observation that the number of transistorsin a dense integrated circuit (IC)
doubles about every two years. Moore's law is an observation and projection of a historical
trend. Rather than a law of physics, it is an empirical relationship linked to gains from experience

in production.

https://en.wikipedia.org/wiki/Transistor_count
https://en.wikipedia.org/wiki/Transistor
https://en.wikipedia.org/wiki/Integrated_circuit
https://en.wikipedia.org/wiki/Observation
https://en.wikipedia.org/wiki/Forecasting
https://en.wikipedia.org/wiki/Physical_law
https://en.wikipedia.org/wiki/Empirical_relationship
https://en.wikipedia.org/wiki/Wright%27s_Law

Moore’s Law — The number of transistors on integrated circuit chips (1971-2018) OurWorld
Moore's law describes the empirical regularity that the number of transistors on integrated circuits doubles approximately every two years. inJata

This advancement is important as other aspects of technological progress — such as processing speed or the price of electronic products — are
linked to Moore's law.

50,000,000,000

10,000,000,000
5,000,000,000

. 7 ‘ y "éa
1,000,000,000 ‘ e, s M I
500,000,000 — B Sore i (Quac : OO re S a W
Itaniurr : L35S - 3M
100,000,000
50000,000 -3 m:::)ﬂohxsurb QBar S

Pentium Il Tualatin

e M xon
tium 1l .kzb}\ Dixon, ©ARM Cortex-A9

m |ll Coppermir

10,000,000 0 1l Katm
5,000,000

-
c
3
Q
o
—
o

=

2
n
o
©
—-

-

Intel 80486,

1,000,000 °.
500,000

100,000
50,000

QARM 2
Qa1

10,000
5,000

1,000

Data source: Wikipedia (https://en.wikipedia.org/wiki/Transistor_count)
The data visualization is available at OurWorldinData.org. There you find more visualizations and research on this topic. Licensed under CC-BY-SA by the author Max Roser.

Speed Up and Efficency

The speed up is defined as the ratio of the serial runtime of the best sequential algorithm for

solving a problem to the time taken by the parallel algorithm to solve the same problem on N
Processors. :

Speed Up (S) whereas Ts,piq; ---Serial Time, Tpgrqiier --- Parallel Time

TSerial
S =
TParallel

The efficiencyf(E) is defined as the ratio of speed up to the number of processors (N). Efficiency
measures the fraction of time for which aprocessor is usefully utilized.

Efficiency (E):

Amdahl's law

Suppose you have a sequential code and that a fraction f of its computation is
parallelized and run on N processing units working in parallel, while the remaining
fraction 1-f cannot be improved, i.e., it cannot be parallelized. Amdahl’s law states that
the speedup achieved by parallelization is:

T=ts+t,=A—-f)+f

T T 1

 Tg+Ty/N T - +f/N _ 1-f

https://stackoverflow.com/posts/37335032/timeline

Amdahl's Law

Number of processors

Parallel portion
50%

—-— 90%
—— 95%

Amdahl's law

Gustafson’s Law

Suppose you have an application taking a time ts to be executed on N processing units.
Of that computing time, a fraction (1-f) must be run sequentially. Accordingly,
this application would run on a fully sequential machine in a time t equal to:

T=(1—f)Ty+Nxf*T,

If we increase the problem size, we can increase the number of processing units to keep the fraction
of time the code is executed in parallel equal to f-ts. In this case, the sequential execution time
Increases with N which now becomes a measure of the problem size. The speedup then becomes:

=(1_f)*TS+N*f*TS

S
T

= (1—f)+Nxf

sflr=1)=ts+ (1 —ts)n

Gustafson’s Law

Amdahl vs. Gustafson’s Law

Speedup when exacution
time s fixed (Gustafson)

Amount of work
Execution time

1 2 3 4 5 1 2 3 4 5
Number of cores p Number of cores p

(a) Amdahl’s assumption.

Speedup when problem
slze is fixed (Amdahl)

Amount of work
Execution time

U.E D.4 D.Eli G.B . 1 2 3 4 5% 1 2 3 4 5%

Number of cores p Number of cores p

Observable parallel fraction of existing workload (b) Gustafson’s assumption.

https://link.springer.com/referenceworkentry/10.1007 https://www.semanticscholar.org/paper/Amdahl's-law-for-
%2F978-0-387-09766-4 78 predicting-the-future-of-harmful-Juurlink-

Meenderinck/d9bf0d5b321ee9bb1a0f118037a83e9026bad66e

Different Kind of Speed Ups

Parallel

Typical
Success

Processors

Negative

Some Metrics of HPC

IPC: In , instructions per cycle (IPC), commonly called instructions per
clock is one aspect of a 's performance: the average number of executed
for each . Itisthe of

FLOPS: In , floating point operations per second (FLOPS, flops or flop/s) is a measure
of , useful in fields of scientific computations that require

calculations. For such cases it is a more accurate measure than measuring

FLOPS CYLES
*
CYCLE SECOND

FLOPSCORE -

INSTRUCTIONS OPERATIONS FLOPS CYCLES
* * *
CYCLE INSTUCTION OPERATION SECOND

Or Simple: FLOPS opz = AVERAGE FREQUENCY(f) * INSTRUCTIONS PER CYCLE (IPC)

Some Examples for Floating Point Operations, c=a*b, c=a+b = y=Ax+y (axpy Operation)

https://en.wikipedia.org/wiki/Computer_architecture
https://en.wikipedia.org/wiki/Central_processing_unit
https://en.wikipedia.org/wiki/Instruction_(computer_science)
https://en.wikipedia.org/wiki/Clock_cycle
https://en.wikipedia.org/wiki/Multiplicative_inverse
https://en.wikipedia.org/wiki/Cycles_per_instruction
https://en.wikipedia.org/wiki/Computing
https://en.wikipedia.org/wiki/Computer_performance
https://en.wikipedia.org/wiki/Floating-point
https://en.wikipedia.org/wiki/Instructions_per_second

Simple Examples for Computing FLOPS

Node performance in GFlops = (CPU speed in GHz) x (number of CPU cores) x (CPU instruction per cycle) x
(number of CPUs per nodef

Example 1: Dual-CPU server based on Intel X5675 (3.06GHz 6-cores) CPUs:
3.06x6x4x2=144.88 GFLOPS

Example 2: Dual-CPU server based on Intel E5-2670(2.6GHz 8-cores) CPUs:
2.6 x8x8x2=332.8GFLOPS _
(Note that the number of instructions per cycle for E5-2600v1 and E5-2600v2 series CPUs is equal to 8)

Example 3: Dual-CPU server based on Intel E5-2690v3 (2.6GHz 12-cores) CPUs:
2.6x12x16x2=998.4GFLOPS
(Note that the number of instructions per cycle for E5-2600v3 series CPUs is equal to 16)

Example 4: Dual-CPU server based on AMD 6176 (2.3GHz 12-cores) CPUs:
2.3x12x4x2=220.8GFLOPS

Example 5: Dual-CPU server based on AMD 6274 (2.2GHz 16-cores) CPUs:
2.2x16x4x2=281.6 GFLOPS

http://www.novatte.com/our-blog/197-how-to-calculate-peak-theoretical-performance-of-a-cpu-based-hpc-system

TOP 500

10000000000

https://www.top500.0rg/statistics/perfdevel/

CPUs, GPUs, FPGAs and ASICS

CPU: A central processing unit (CPU), also called a central processor, main processor or just

processor, is the within a that executes that make up a
. The CPU performs basic , logic, controlling, and (1/0)

operations specified by the instructions in the program.

GPU: A graphics processing unit (GPU) is a specialized, designed to rapidly

manipulate and alter to accelerate the creation of in a intended for

output to a

FPGA: A field-programmable gate array (FPGA) is an designed to be configured

by a customer or a designer after manufacturing — hence the term "

ASIC: An application-specificintegrated circuit (ASIC) is an (IC) chip
customized for a particular use, rather than intended for general-purpose use.

Quelle: Wiki

https://en.wikipedia.org/wiki/Electronic_circuit
https://en.wikipedia.org/wiki/Computer
https://en.wikipedia.org/wiki/Instruction_(computing)
https://en.wikipedia.org/wiki/Computer_program
https://en.wikipedia.org/wiki/Arithmetic
https://en.wikipedia.org/wiki/Input/output
https://en.wikipedia.org/wiki/Electronic_circuit
https://en.wikipedia.org/wiki/Memory_(computing)
https://en.wikipedia.org/wiki/Digital_image
https://en.wikipedia.org/wiki/Frame_buffer
https://en.wikipedia.org/wiki/Display_device
https://en.wikipedia.org/wiki/Integrated_circuit
https://en.wikipedia.org/wiki/Field-programmability
https://en.wikipedia.org/wiki/Help:IPA/English
https://en.wikipedia.org/wiki/Integrated_circuit

Important Components

ALU: In , an arithmetic logic unit (ALU) is a that performs

and on : Thisisin contrastto a (FPU),
which operateson numbers.

Cache: In , a cache is a hardware or software component that stores data so that future

requests for that data can be served faster; the datastored in a cache might be the result of an earlier
computation or a copy of data stored elsewhere.

DRAM: Dynamic random-access memory (DRAM) is a type of that
stores each bit of datain a consisting of a tiny and a , both typically based
on (MOS) technology.

Control: The control unit (CU) is a component of a computer's (CPU) that directs the

operation of the processor. It tells the computer's memory, arithmetic and logic unit and input and output
devices how to respond to the instructions that have been sent to the processor.

FPU: A floating-point unit (FPU, colloquiallya math coprocessor)is a part of a system specially
designed to carry out operationson numbers.

https://en.wikipedia.org/wiki/Computing
https://en.wikipedia.org/wiki/Combinational_logic
https://en.wikipedia.org/wiki/Digital_circuit
https://en.wikipedia.org/wiki/Arithmetic
https://en.wikipedia.org/wiki/Bitwise_operation
https://en.wikipedia.org/wiki/Integer
https://en.wikipedia.org/wiki/Binary_number
https://en.wikipedia.org/wiki/Arithmetic_logic_unit
https://en.wikipedia.org/wiki/Arithmetic_logic_unit
https://en.wikipedia.org/wiki/Arithmetic_logic_unit
https://en.wikipedia.org/wiki/Floating-point_unit
https://en.wikipedia.org/wiki/Floating_point
https://en.wikipedia.org/wiki/Computing
https://en.wikipedia.org/wiki/Random-access_memory
https://en.wikipedia.org/wiki/Semiconductor_memory
https://en.wikipedia.org/wiki/Bit
https://en.wikipedia.org/wiki/Memory_cell_(computing)
https://en.wikipedia.org/wiki/Capacitor
https://en.wikipedia.org/wiki/Transistor
https://en.wikipedia.org/wiki/Metal-oxide-semiconductor
https://en.wikipedia.org/wiki/Central_processing_unit
https://en.wikipedia.org/wiki/Computer
https://en.wikipedia.org/wiki/Floating-point_arithmetic

CPU vs. GPU vs FPGA

Parallel Processing in GPUs and FPGAs

A GPU is effective at processing the same set of operations in parallel - single instruction, multiple data
(SIMD). A GPU has a well-defined instruction-set, and fixed word sizes ~ for example single, double, or
half-precision integer and floating point values.

DRAM DRAM

in P2 has

0 M "'t
(e v

Each FPGA in
F1 has more
than 2M of

these cells

Block RAM

these

Cache

cores
DRAM DR AM
D RAM DRAM

CPU GPU FPGA

: Single core CPU
(hyperthreading)

Logical CPU / Thread

Single core CPU
(no hyperthreading) _ SYSTEM BUS

SYSTEM BUS

Registers Registers il Registers Registers
LCPU4 LCPUS LCPUB LCPU7

Single core hyperthreading CPU
(2 logical CPU's / threads)

Quad-core hyperthreading CPU

https://www.daniloaz.com/en/differences-between-physical-
cpu-vs-logical-cpu-vs-core-vs-thread-vs-socket/

Performance of CPUs, GPUs, FPGAs and
ASICs

P ERFORMANCE vs TIME

(TE{»RO/UC)LHPUT CRNPTOCURRENCY MINING
Mhash /s
(0’

(0°

100 OO0

J’———-‘_'—?'—_——

—_ 1———‘_—-‘—-—]
toxp 2009 2006 " 9ol 200 OB o4 2oiS 2o

https://en.bitcoinwiki.org/wiki/Why_a_GPU_mines_faster_than_a_ CPU

Flynn‘s Taxonomy

Single instruction stream, single data stream (SISD): A sequential computer which exploits no
parallelism in either the instruction or data streams.

Single instruction stream, multiple data streams (SIMD): A single instruction operates on
multiple different data streams. Instructions can be executed sequentially, such as by pipelining,
or in parallel by multiple functional units.

Multiple instruction streams, single data stream (MISD): Multiple instructions operate on one
data stream. This is an uncommon architecture which is generally used for fault tolerance.

Multiple instruction streams, multiple data streams (MIMD): Multiple autonomous processors
simultaneously executing different instructions on different data. MIMD architectures include

processors, and , using either one shared memory
space or a distributed memory space

https://en.wikipedia.org/wiki/Multi-core
https://en.wikipedia.org/wiki/Superscalar
https://en.wikipedia.org/wiki/Distributed_system

Flynn‘s Taxonomy

Instruction Pool Instruction Pool

% =B
o o
2]
o L
]]

Instruction Pool Instruction Pool

o
o
+5
o
-

)) - -
cC c c (o
Data Pool

Loop Dependence Analysis

for iy until U, do ...
for i, until U, do...
for in until Un do...
boady
done
done
done

Body:
Statement 1:a[f(iy, ..., i), .., T(iy, -oesi)] =

Statement 2: ... := a[h(iy, ..., i), ..., h(ig -os 1)

Loop Dependence analysis

for (i=0;i<U1; i++)
for j = 0;j < UZ; j++)
ali+4-j] = b[2xi-j] +
I*);
end
end

f1 would be i+4-j, controlling the write on the first dimension of a and h2
would be 2*i-j, controlling the read on the first dimension of b.

Flow Dependency (True Dependency)

A Flow dependency, also known as a data dependency or true dependency or read-after-write
(RAW), occurs when an instruction depends on the result of a previous instruction:

Example 1:
1.A=3
2.B=A
3.C=8B
Example 2:

for(j =1;j <n; j++)

afj] = alj-1];

Anti-Dependency (1)

An anti-dependency, also known as write-after-read (WAR), occurs when an instruction requires
a value that is later updated.

1.B=3
2.A=B+1
3.B=7

An anti-dependency is an example of a name dependency. That is, renaming of variables could
remove the dependency, as in the next example:

1.B=3
N.B2=B
2.A=B2+1

3.B=7

Anti-Dependency (2)

Example 2:
for(j=0;) <n;j++)
b[j] = b[j+1];

Output Dependency (1)

An output dependency, also known as write-after-write (WAW), occurs when the ordering of
instructions will affect the final output value of a variable.

1.B8=3
2.A=B+1
3.B=7

As with anti-dependencies, output dependencies are name dependencies. That is, they may be
removed through renaming of variables, as in the below modification of the above example:

1.B2=3
2.A=B2+1
3.B=7

Output Dependency (2)

Example 2:
for(j=0;j< n;j++)
clil =j;
c[j+1] =5;

Checking Dependencies:

Greatest Common Divisior:

A
al*x1+a2*x2 +... + an*xn =c

has an integer solution x1, x2,..., xn iff GCD (al,a2,.., an) divides c.

E.g.
2*x1 -2*x2 =1

GCD(2,-2) =2, 2 cannot divide 1. So, there is no integer solution for the equation above.

https://en.wikipedia.org/wiki/Linear_Diophantine_equation

GCD - Test

It is based on the observation that if a loop carried dependency exists between X[a*i + b]
and X[c*i + d] (where X is the array; a, b, c and d are integers, and i is the loop variable),
then GCD (c, a) mustdivide (d — b). For example, in the following loop, a=2, b=3, c=2, d=0
and GCD(a,c)=2 and (d-b) is -3. Since 2 does not divide -3, no dependence is possible.

for (i=1; i<=100; i++)
{

X[2*i+3] = X[2*i] + 50;
}

GCD - Test

Loop code in general:

for (int i=0; i<n; i++)
{

sl a[x*i+k] =...;

s2 ...=aly*i+m];

}

To decide if there is loop carried dependence (two array references access the same memory
location and one of them is a write operation) between a[x*i+k] and a[y*i+m].

x*il +k = y*i2+m (Or x*i1 -y*i2 = m -k)

If GCD(x,y) divides (m-k), then there may exist some dependency in the loop statementsl1 and s2. If
GCD(x,y) does not divide (m-k) then both statements are independent and can be executed at

Earallel. Similarlx this test is conducted for all statements Eresent ina given Iooe.

Simple Example

fori=1tonl:
a[2*i] = b[i] + c]i];
d[i] = a[2*i-1];
Are thereil andi2 suchthat 1 <=il<=i2<=10an
2%l =2%i2-1
or, equivalently
2*i2-2%1=1

There is an integer solution if and only if gcd(2,-2) divides 1. This is not the case, so no
dependence.

Checking via Graphs

Example:
for (i=0;i<4; i++)
for (j=0;j<4;j++)
alillj] = alilli-11 * x;
end

end

Iteration-space Traversal Graph (ITG)

Checking Dependencies:

OMEGA Test:
http://www.cs.cmu.edu/~emc/spring06/homel files/p4-pugh.pdf

http://www.cs.umd.edu/~pugh/papers/omega.pdf

Mainly based on Integer Programming.

Further Tests:
ftp://ftp.keldysh.ru/K_student/AUTO_PARALLELIZATION/DATA DEPENDENCE/Pact99.pdf

http://www.cs.cmu.edu/~emc/spring06/home1_files/p4-pugh.pdf
http://www.cs.umd.edu/~pugh/papers/omega.pdf

Optimization Methods

Loop Unrolling (Compiler, Programmer) = Instruction Level Parallism (ILP)
Vectorization (Compiler, Programmer)

Threading (Mostly Programmer)

Memory Layout (Mostly programmer)

Cache-Oblivious Programming (Mostly programmer)

Branch Prediction (Compiler but can be improved through the programmer)

Loop Unrolling

iteration i+1 I
iteration i+2 "\/

Non software-Pipelined

execution iteration i execution
time

i cycl&e
s cycles I

iteration i+1

iteration i+2

Software-PlpeImed

Loop Unrolling

Normal Loop After Loop Unrolling:
: int x;
int x;
for (x =0; x < 100; x++) for(x=0; x<100;x+=5)
{ {
delete(x);
} delete(x);

delete(x + 1);
delete(x + 2);
delete(x + 3);
delete(x + 4);

IF = Instruction Fetch, ID = Instruction Decode, EX = Execute, MEM = Memory access,

WB = Register write back
Pseudo Code:

int pipelines = 5;
for(int i = 0;i < length; i += pipelines){
s+= (X +vy);
s+=(x+vy);
S+=(x+v);
S+=(x+vV);
s+=(x+vy);

Vectorization

cdouble *x, *vy, *z;

for (i=0; i<n; i++)

Threading

ONe Process oNe Process
one thread multiple threads

multiple processes multiple processes
one thread per process multiple threads per process

Threading + Vectorization

(=%
v
%
P
@
(=
i
<
S
-
(=9
o
2
E
o
£
(==]
&
o
Lo

(Higher is Better)

Vectorize & Thread or Performance Dies
Threaded + Vectorized can be Much Faster Together than Either Alone
Performance Increases Scale with Each New Hardware Generation

‘Automatic’ Vectorization is Not Enough
Explicit pragmas & optimization are often required

Vectorized
& Threaded

Cache-oblivious Programming

PROCESSOR
REGISTER

' cPucacHe FASTER

EXPENSIVE
LEVEL 1 (L1) CACHE SMALL CAPACITY
LEVEL 2 (L2) CACHE

EDO, SD-RAM, DDR-SDRAM, RD-RAM PHYSICAL MEMORY FAST

PRICED REASONABLY

and More... AVERAGE CAPACITY

RAMDOM ACCESS MEMORY (RAM)

SSD, Flash Drive SOLID STATE MEMORY AVERAGE SPEED

PRICED REASONABLY
AVERAGE CAPACITY

NON-VOLATILE FLASH-BASED MEMORY

Mechanical Hard Drives VIRTUAL MEMORY SLOwW

CHEAP
LARGE CAPACTITY

FILE-BASED MEMORY

4 Simplified Computer Memory Hierarchy
lllustration: Ryan J. Leng

https://sites.google.com/site/cachememory2011/memory-hierarchy

Memory Access

Row Access:

[e1e] ~ [ELEELETTT
poo

Column Access:

column-major
O Oeaiiid Bibn
B O

https://eli.thegreenplace.net/2015/memory-layout-of-multi-dimensional-arrays

Simple Example (Column and Row Access):

void AddMatrixByCol(Matrix& y, const Matrix& x) { ~ void AddMatrixByRow(Matrix& y, const Matrix& x) {
__ _ assert(y.M == x.M);
assert(y.M == x.M);

assert(y.N == x.N); assert(y.N == x.N);

for (size_t col = 0; col < y.N; ++col) { for (size_t row = 0; row <y.M; ++row) {

for (size_t row = 0; row <y.M; ++row) {
y.data[row * y.N + col] += x.data[row * x.N + col]; y-datafrow * y.N + col] += x.data[row * x.N + col];
} }
) }
} }

for (size_t col = 0; col <y.N; ++col) {

https://eli.thegreenplace.net/2015/memory-layout-of-multi-dimensional-arrays

Memory Access

Bl by-row-vec
.| by-row-nonvec
|3 by-col

[&]
3
@
E
@
=
=3
<
o
—

128x128 256x256 512x512
matrix size

https://eli.thegreenplace.net/2015/memory-layout-of-multi-dimensional-arrays

Branch Prediction

takean

taken

not taken

Parallel Programming on CPUs and GPUs

Programming on CPUs:
> Shared vs Distributed Memory Systems

> MPI (Multiprocessor Interface) vs OpenMP, TBB (Thread Building Blocks), Cilk

Programming on GPUs:
> OpenCL vs CUDA:

> Generic Programming (AMD, ..) vs Proprietary Programming (Nvidia)
> OpenCL: Programming on CPUs, GPUs, FPGAs
> CUDA (Nvidia): Programming on GPUs

CPU vs. GPU in Detalil

ALU

Low compute density High compute density

Complex control logic High Computations per Memory Access
Large caches (L1$/L2$, etc.) Built for parallel operations

Opﬁmized for serial operations * Many parallel execution units (ALUs)
Graphics is the best known case of parallelism

Fewer execution units (ALUs)
Higher clock speeds Deep pipelines (hundreds of stages)

Shallow pipelines (<30 stages) High Throughput
Low Latency Tolerance High Latency Tolerance

Newer CPUs have more parallelism Newer GPUs:
* Better flow control logic (becoming more CPU-like)
Scatter/Gather Memory Access
Don't have one-way pipelines anymore

https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html|

Different Kinds of Parallelism

Instruction Level Parallelism (ILP)
Vectorization

Multiprocesser System:
> Shared Memory (Uniform Memory Access)

o Distributed Memory (None Uniform Memory Access)

MULTIPLE PROCESSOR SYSTEMS

(a) A shared-memory multiprocessor. (b) A message-passing multicomputer. (c) A -wide
area distributed system.

Shared Memory (OpenMP) vs Distributed
Memory System (MPI)

OpenMP

7 \ —
CPU CPU
Core I\ / Core (\(\/ A 3\
' CPU CPU CPU CPU
Memory J /) ‘ Merory | Core | Core | Core Core
\ | Joe——— \ 7 -

Private Nm————

e

Arrays \ Network
Interconnect Memory, Shared Arrays etc.

A eeee———————————

Typically less memory overhead/duplication.
Communication often implicit, through cache
coherency and runtime

Uniform vs. None Uniform Memory Acces

MPI (Message Parsing Interface):

i 5 network ! I

I 5 network !

Structure of Communication (MP]

l MPI include file

Declarations, prototypes, efc.
Pragram Begins

Serial code

Initialize MPI environment Parailel code begins

l Do work & make message passing calls

l Terminate MPI environment parailel code ends

Serial code

Program Ends

Structure of Communication (OpenMP)

Structure of Communication (CUDA)

C Program
Sequential
Execution

include <cuda.h>

pexsliel kemmel | B oid vecAdd(float* A, float* B, float* C,intn) T

Kernel0<<<>>>() Grid 0

Host memory Device memory

GPU
(Part 2)

Block (0,0) Block (1,0) Block (2, 0)

int size = n* sizeof(float);

Block (0,1) Block (1,1) Block (2, 1) float *d_A *d_B. *d_C;

’ CPU

1. // Allocate device memory for A, B, and C
// copy A and B to device memory

2. Il Kernel launch code — to have the device
Parallel kernel /I to perform the actual vector addition
Kernell<<<>>>()
3. !/l copy C from the device memory
!/l Free device vectors

}

MPI and CUDA

Grid of Thread Blocks / Memory
Hierarchy

Grid

Block (0 0} | Blodc(1,0) | Block (2 0)

Block (0 1) Blodk (1, 1) ‘~u (2.1)

Blodk (0, 0) || Block (1, 0) || Black (2. 0)

R W W

Block (1, 1) 1. : Blodk (0, 1) || Block (1, 1) || Black (2. 1)

Grid 1

Block (0, 0)

Block [0, 1) Block (1 1)

Block (O 7) Block (1. 2

Simple Vector Operation

Vector_Addition(*C, *A, *B,intN)
{
for(inti=0; i < N; ++i)
{
C[i]l = A[i] + B[i];
}
}

1 e)

+ + + + + + + +

)) EX ER E)

4444
ol il o e

Kernel for Mulitprocessor Systems

Vector_Addition(*C, *A,const *B,intN, int NP, int tid)

{
int ept = N/NP;
for(inti=tid*ept; i < (tid+1)*ept; ++i)
{

}

Cli] = A[i] + B[il;

Kernel for CUDA

__global__ Vector_Addition (*dev_a, *dev b, *dev ()
{

tid = blockldx.x * blockDim.x + threadldx.x ;

(tid<N)
{
dev_c [tid] = dev_a[tid] + dev_b|[tid];
tid+= blockDim.x * gridDim.x;
}
}

How to get Thread Position (tid)

?

Block 0 Thread 0

Thread 0

Block 2 Thread 0

Block 3 Thread 0

Thread 1

Thread 1

Thread 1

Thread 1

Thread 2

Thread 2

Thread 2

Thread 3

Thread 3

Thread 3

Thread 3

A two-dimensional arrangement of a collection of blocks and threads

int offset = x +y * DIM;

tid = threadldx.x + blockldx.x * blockDim.x.

Getting enough Threads 7

In fact, we will launch too few threads whenever N is not an exact multiple of 128. This is
bad. We actually want this division to round up. There is a common trick to accomplish this
In integer division without calling ceil(). We actually compute (N+127)/128 instead of N/128.
Either you can take our word that this will compute the smallest multiple of 128 greater
than or equal to N or you can take a moment now to convince yourself of this fact.

Callin the Kernel:
Vector_Addition (dev _a,dev b,dev c);

Because of our change to the division that ensures we launch enough threads, we will
actually now launch too many threads when N is not an exact multiple of 128.

Restrict Memory Access in the Kernel:

if (tid < N)
c[tid] = a[tid] + b[tid]:

CPU vs GPU Floating Point Operations

Theoretical GB/s

360
330

300 P Tesla K40

GeForce GPU :
Tesla K20X
- Tesla GFU

TeslaM20%0

90
zaFar 300 G vy Bridge
&0 i i Sandy Bridge
gy e o Bloomfield
ianin 81

GeForce FX 5900 Prescott YYoodcrest

Westmere
(Y, re— Harpertown i) :
2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013

The End

