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What is high performance 
computing?
“High Performance Computing most 
generally refers to the practice of 
aggregating computing power in a way 
that delivers much higher performance 
than one could get out of a typical 
desktop computer or workstation in 
order to solve large problems in science, 
engineering, or business.” 
https://insidehpc.com/hpc-basic-
training/what-is-hpc/

https://insidehpc.com/hpc-basic-training/what-is-hpc/


Applications 
of High 

Performance 
Computing

HEALTHCARE

ENGINEERING (Aircraft, 

SPACE RESEARCH

URBAN PLANNING

FINANCE & BUSINESS

WEATHER RESEARCH

MACHINE LEARNING

https://builtin.com/hardware/high-
performance-computing-applications

https://builtin.com/hardware/high-performance-computing-applications


Problems in High 
Performance 
Computing

Energy Wall Problem

Bandwidth Problem



Scaling Bound in HPC
http://15418.courses.cs.cmu.
edu/spring2016/lecture/whypa
rallelism/slide_033



Energy Wall 
Problem in 
HPC

𝑃 = 𝑁 ∗ 𝑎𝑙𝑝ℎ𝑎 ∗ 𝐶 ∗ 𝑉2 ∗ 𝑓

𝑃𝑜𝑤𝑒𝑟 = 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝐶𝑃𝑈𝑠 ∗ 𝐴𝑐𝑡𝑖𝑣𝑒 𝑟𝑎𝑡𝑒 𝑜𝑓 𝑃𝑟𝑜𝑐𝑒𝑠𝑠𝑜𝑟𝑠 ∗ 𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦 ∗ 𝑉𝑜𝑙𝑡𝑎𝑔𝑡𝑒2 ∗ 𝐶𝑙𝑜𝑐𝑘 𝐹𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦



Processor vs 
Memory Speed

https://www.extremetech.com/extreme/188776-
how-l1-and-l2-cpu-caches-work-and-why-theyre-
an-essential-part-of-modern-chips



Bandwidth 
Bound in HPC
http://sc16.supercomputing.org/2

016/10/07/sc16-invited-talk-
spotlight-dr-john-d-mccalpin-
presents-memory-bandwidth-
system-balance-hpc-
systems/index.html



Different Laws in High Performance Computing
Moore‘s Law: Moore's law is the observation that the number of transistors in a dense integrated 
circuit (IC) doubles about every two years. Moore's law is an observation and projection of a historical 
trend. Rather than a law of physics, it is an empirical relationship linked to gains from experience in 
production.

Amdahl’s Law: In computer architecture, Amdahl's law (or Amdahl's argument[1]) is a formula which 
gives the theoretical speedup in latency of the execution of a task at fixed workload that can be 
expected of a system whose resources are improved

Gustafson’s Law: In computer architecture, Gustafson's law (or Gustafson–Barsis's law[1]) gives the 
theoretical speedup in latency of the execution of a task at fixed execution time that can be expected 
of a system whose resources are improved.

https://en.wikipedia.org/wiki/Transistor_count
https://en.wikipedia.org/wiki/Transistor
https://en.wikipedia.org/wiki/Integrated_circuit
https://en.wikipedia.org/wiki/Observation
https://en.wikipedia.org/wiki/Forecasting
https://en.wikipedia.org/wiki/Physical_law
https://en.wikipedia.org/wiki/Empirical_relationship
https://en.wikipedia.org/wiki/Wright%27s_Law
https://en.wikipedia.org/wiki/Computer_architecture
https://en.wikipedia.org/wiki/Amdahl%27s_law
https://en.wikipedia.org/wiki/Speedup
https://en.wikipedia.org/wiki/Latency_(engineering)
https://en.wikipedia.org/wiki/Workload
https://en.wikipedia.org/wiki/Computer_architecture
https://en.wikipedia.org/wiki/Gustafson%27s_law
https://en.wikipedia.org/wiki/Speedup
https://en.wikipedia.org/wiki/Latency_(engineering)


Moore’s Law

Moore's law is the observation that the number of transistors in a dense integrated circuit (IC) 
doubles about every two years. Moore's law is an observation and projection of a historical 
trend. Rather than a law of physics, it is an empirical relationship linked to gains from experience
in production. 

https://en.wikipedia.org/wiki/Transistor_count
https://en.wikipedia.org/wiki/Transistor
https://en.wikipedia.org/wiki/Integrated_circuit
https://en.wikipedia.org/wiki/Observation
https://en.wikipedia.org/wiki/Forecasting
https://en.wikipedia.org/wiki/Physical_law
https://en.wikipedia.org/wiki/Empirical_relationship
https://en.wikipedia.org/wiki/Wright%27s_Law


Moore's law



Speed Up and Efficency
The speed up is defined as the ratio of the serial runtime of the best sequential algorithm for 
solving a problem to the time taken by the parallel algorithm to solve the same problem on N 
processors. :

Speed Up (S) whereas 𝑇𝑆𝑒𝑟𝑖𝑎𝑙…𝑆𝑒𝑟𝑖𝑎𝑙 𝑇𝑖𝑚𝑒, 𝑇𝑃𝑎𝑟𝑎𝑙𝑙𝑒𝑙…𝑃𝑎𝑟𝑎𝑙𝑙𝑒𝑙 𝑇𝑖𝑚𝑒

S =
𝑇𝑆𝑒𝑟𝑖𝑎𝑙

𝑇𝑃𝑎𝑟𝑎𝑙𝑙𝑒𝑙

The efficiency (E) is defined as the ratio of speed up to the number of processors (N). Efficiency 
measures the fraction of time for which aprocessor is usefully utilized.

Efficiency (E):

E=
𝑆

𝑁



Amdahl's law
Suppose you have a sequential code and that a fraction f of its computation is 

parallelized and run on N processing units working in parallel, while the remaining 

fraction 1-f cannot be improved, i.e., it cannot be parallelized. Amdahl’s law states that 

the speedup achieved by parallelization is:

𝑇 = 𝑡𝑠 + 𝑡𝑝 = 1 − 𝑓 + 𝑓

𝑆 =
𝑇

𝑇𝑠+𝑇𝑝/𝑁
=

𝑇

1−𝑓 +𝑓/𝑁
=

1

1−𝑓

https://stackoverflow.com/posts/37335032/timeline


Amdahl's law



Gustafson’s Law
Suppose you have an application taking a time ts to be executed on N processing units.

Of that computing time, a fraction (1-f) must be run sequentially. Accordingly, 

this application would run on a fully sequential machine in a time t equal to:

𝑇 = 1 − 𝑓 𝑇𝑠 +𝑁 ∗ 𝑓 ∗ 𝑇𝑠

If we increase the problem size, we can increase the number of processing units to keep the fraction

of time the code is executed in parallel equal to f·ts. In this case, the sequential execution time 

increases with N which now becomes a measure of the problem size. The speedup then becomes:



Gustafson’s Law



Amdahl vs. Gustafson’s Law

https://link.springer.com/referenceworkentry/10.1007
%2F978-0-387-09766-4_78

https://www.semanticscholar.org/paper/Amdahl's-law-for-
predicting-the-future-of-harmful-Juurlink-
Meenderinck/d9bf0d5b321ee9bb1a0f118037a83e9026ba466e
/figure/2



Different Kind of Speed Ups



Some Metrics of HPC
IPC: In computer architecture, instructions per cycle (IPC), commonly called instructions per 
clock is one aspect of a processor's performance: the average number of instructions executed 
for each clock cycle. It is the multiplicative inverse of cycles per instruction

FLOPS: In computing, floating point operations per second (FLOPS, flops or flop/s) is a measure 
of computer performance, useful in fields of scientific computations that require floating-point
calculations. For such cases it is a more accurate measure than measuring instructions per 
second.  

𝐹𝐿𝑂𝑃𝑆𝐶𝑂𝑅𝐸 =
𝐹𝐿𝑂𝑃𝑆

𝐶𝑌𝐶𝐿𝐸
∗

𝐶𝑌𝐿𝐸𝑆

𝑆𝐸𝐶𝑂𝑁𝐷

𝐹𝐿𝑂𝑃𝑆𝐶𝑂𝑅𝐸 =
𝐼𝑁𝑆𝑇𝑅𝑈𝐶𝑇𝐼𝑂𝑁𝑆

𝐶𝑌𝐶𝐿𝐸
∗
𝑂𝑃𝐸𝑅𝐴𝑇𝐼𝑂𝑁𝑆

𝐼𝑁𝑆𝑇𝑈𝐶𝑇𝐼𝑂𝑁
∗

𝐹𝐿𝑂𝑃𝑆

𝑂𝑃𝐸𝑅𝐴𝑇𝐼𝑂𝑁
∗
𝐶𝑌𝐶𝐿𝐸𝑆

𝑆𝐸𝐶𝑂𝑁𝐷

Or Simple: 𝐹𝐿𝑂𝑃𝑆𝐶𝑂𝑅𝐸 = 𝐴𝑉𝐸𝑅𝐴𝐺𝐸 𝐹𝑅𝐸𝑄𝑈𝐸𝑁𝐶𝑌 𝑓 ∗ 𝐼𝑁𝑆𝑇𝑅𝑈𝐶𝑇𝐼𝑂𝑁𝑆 𝑃𝐸𝑅 𝐶𝑌𝐶𝐿𝐸 (𝐼𝑃𝐶)

Some Examples for Floating Point Operations, c=a*b, c=a+b = y=Ax+y (axpy Operation)

https://en.wikipedia.org/wiki/Computer_architecture
https://en.wikipedia.org/wiki/Central_processing_unit
https://en.wikipedia.org/wiki/Instruction_(computer_science)
https://en.wikipedia.org/wiki/Clock_cycle
https://en.wikipedia.org/wiki/Multiplicative_inverse
https://en.wikipedia.org/wiki/Cycles_per_instruction
https://en.wikipedia.org/wiki/Computing
https://en.wikipedia.org/wiki/Computer_performance
https://en.wikipedia.org/wiki/Floating-point
https://en.wikipedia.org/wiki/Instructions_per_second


Simple Examples for Computing FLOPS
Node performance in GFlops = (CPU speed in GHz) x (number of CPU cores) x (CPU instruction per cycle) x 
(number of CPUs per node)

Example 1: Dual-CPU server based on Intel X5675 (3.06GHz 6-cores) CPUs:
3.06 x 6 x 4 x 2 = 144.88 GFLOPS

Example 2: Dual-CPU server based on Intel E5-2670 (2.6GHz 8-cores) CPUs:
2.6 x 8 x 8 x 2 = 332.8 GFLOPS
(Note that the number of instructions per cycle for E5-2600v1 and E5-2600v2 series CPUs is equal to 8)

Example 3: Dual-CPU server based on Intel E5-2690v3 (2.6GHz 12-cores) CPUs:
2.6 x 12 x 16 x 2 = 998.4 GFLOPS
(Note that the number of instructions per cycle for E5-2600v3 series CPUs is equal to 16)

Example 4: Dual-CPU server based on AMD 6176 (2.3GHz 12-cores) CPUs:
2.3 x 12 x 4 x 2 = 220.8 GFLOPS

Example 5: Dual-CPU server based on AMD 6274 (2.2GHz 16-cores) CPUs:
2.2 x 16 x 4 x 2 = 281.6 GFLOPS

http://www.novatte.com/our-blog/197-how-to-calculate-peak-theoretical-performance-of-a-cpu-based-hpc-system



TOP 500

https://www.top500.org/statistics/perfdevel/



CPUs, GPUs, FPGAs and ASICS
CPU: A central processing unit (CPU), also called a central processor, main processor or just 
processor, is the electronic circuitry within a computer that executes instructions that make up a 
computer program. The CPU performs basic arithmetic, logic, controlling, and input/output (I/O) 
operations specified by the instructions in the program.

GPU:  A graphics processing unit (GPU) is a specialized, electronic circuit designed to rapidly 
manipulate and alter memory to accelerate the creation of images in a frame buffer intended for 
output to a display device.

FPGA: A field-programmable gate array (FPGA) is an integrated circuit designed to be configured 
by a customer or a designer after manufacturing – hence the term "field-programmable".

ASIC: An application-specific integrated circuit (ASIC /ˈeɪsɪk/) is an integrated circuit (IC) chip 
customized for a particular use, rather than intended for general-purpose use.

Quelle: Wiki

https://en.wikipedia.org/wiki/Electronic_circuit
https://en.wikipedia.org/wiki/Computer
https://en.wikipedia.org/wiki/Instruction_(computing)
https://en.wikipedia.org/wiki/Computer_program
https://en.wikipedia.org/wiki/Arithmetic
https://en.wikipedia.org/wiki/Input/output
https://en.wikipedia.org/wiki/Electronic_circuit
https://en.wikipedia.org/wiki/Memory_(computing)
https://en.wikipedia.org/wiki/Digital_image
https://en.wikipedia.org/wiki/Frame_buffer
https://en.wikipedia.org/wiki/Display_device
https://en.wikipedia.org/wiki/Integrated_circuit
https://en.wikipedia.org/wiki/Field-programmability
https://en.wikipedia.org/wiki/Help:IPA/English
https://en.wikipedia.org/wiki/Integrated_circuit


Important Components
ALU: In computing, an arithmetic logic unit (ALU) is a combinational digital circuit that performs arithmetic
and bitwise operations on integer binary numbers.[1][2][3] This is in contrast to a floating-point unit (FPU), 
which operates on floating point numbers.

Cache: In computing, a cache is a hardware or software component that stores data so that future 
requests for that data can be served faster; the data stored in a cache might be the result of an earlier 
computation or a copy of data stored elsewhere.

DRAM: Dynamic random-access memory (DRAM) is a type of random access semiconductor memory that 
stores each bit of data in a memory cell consisting of a tiny capacitorand a transistor, both typically based 
on metal-oxide-semiconductor (MOS) technology. 

Control: The control unit (CU) is a component of a computer's central processing unit (CPU) that directs the 
operation of the processor. It tells the computer's memory, arithmetic and logic unit and input and output 
devices how to respond to the instructions that have been sent to the processor.

FPU: A floating-point unit (FPU, colloquially a math coprocessor) is a part of a computer system specially 
designed to carry out operations on floating-point numbers.

https://en.wikipedia.org/wiki/Computing
https://en.wikipedia.org/wiki/Combinational_logic
https://en.wikipedia.org/wiki/Digital_circuit
https://en.wikipedia.org/wiki/Arithmetic
https://en.wikipedia.org/wiki/Bitwise_operation
https://en.wikipedia.org/wiki/Integer
https://en.wikipedia.org/wiki/Binary_number
https://en.wikipedia.org/wiki/Arithmetic_logic_unit
https://en.wikipedia.org/wiki/Arithmetic_logic_unit
https://en.wikipedia.org/wiki/Arithmetic_logic_unit
https://en.wikipedia.org/wiki/Floating-point_unit
https://en.wikipedia.org/wiki/Floating_point
https://en.wikipedia.org/wiki/Computing
https://en.wikipedia.org/wiki/Random-access_memory
https://en.wikipedia.org/wiki/Semiconductor_memory
https://en.wikipedia.org/wiki/Bit
https://en.wikipedia.org/wiki/Memory_cell_(computing)
https://en.wikipedia.org/wiki/Capacitor
https://en.wikipedia.org/wiki/Transistor
https://en.wikipedia.org/wiki/Metal-oxide-semiconductor
https://en.wikipedia.org/wiki/Central_processing_unit
https://en.wikipedia.org/wiki/Computer
https://en.wikipedia.org/wiki/Floating-point_arithmetic


CPU vs. GPU vs FPGA 



CPU

https://www.daniloaz.com/en/differences-between-physical-
cpu-vs-logical-cpu-vs-core-vs-thread-vs-socket/



Performance of CPUs, GPUs, FPGAs and 
ASICs

https://en.bitcoinwiki.org/wiki/Why_a_GPU_mines_faster_than_a_CPU



Flynn‘s Taxonomy
Single instruction stream, single data stream (SISD): A sequential computer which exploits no 
parallelism in either the instruction or data streams. 

Single instruction stream, multiple data streams (SIMD): A single instruction operates on 
multiple different data streams. Instructions can be executed sequentially, such as by pipelining, 
or in parallel by multiple functional units.

Multiple instruction streams, single data stream (MISD): Multiple instructions operate on one 
data stream. This is an uncommon architecture which is generally used for fault tolerance.

Multiple instruction streams, multiple data streams (MIMD): Multiple autonomous processors 
simultaneously executing different instructions on different data. MIMD architectures include 
multi-core superscalar processors, and distributed systems, using either one shared memory 
space or a distributed memory space

https://en.wikipedia.org/wiki/Multi-core
https://en.wikipedia.org/wiki/Superscalar
https://en.wikipedia.org/wiki/Distributed_system


Flynn‘s Taxonomy



Loop Dependence Analysis

for i1 until U1 do ...

for i2 until U2 do...
for in until Un do...

body
done

done

done

Body:
Statement 1:a[f1(i1, ..., in), ..., fm(i1, ..., in)] := ...

Statement 2: ... := a[h1(i1, ..., in), ..., hm(i1, ..., in)] 



Loop Dependence analysis

for (i = 0; i < U1; i++)

for (j = 0; j < U2; j++)

a[i+4−j] = b[2∗i−j] +

i∗j;

end

end

f1 would be i+4-j, controlling the write on the first dimension of a and h2 

would be 2*i-j, controlling the read on the first dimension of b. 



Flow Dependency (True Dependency)
A Flow dependency, also known as a data dependency or true dependency or read-after-write 
(RAW), occurs when an instruction depends on the result of a previous instruction: 

Example 1:

1. A = 3

2. B = A

3. C = B

Example 2:

for(j = 1; j < n; j++)

a[j] = a[j−1];



Anti-Dependency (1)
An anti-dependency, also known as write-after-read (WAR), occurs when an instruction requires 
a value that is later updated.

1. B = 3

2. A = B + 1

3. B = 7 

An anti-dependency is an example of a name dependency. That is, renaming of variables could 
remove the dependency, as in the next example: 

1. B = 3 

N. B2 = B

2. A = B2 + 1

3. B = 7



Anti-Dependency (2)
Example 2:

for(j = 0; j < n; j++) 

b[j] = b[j+1];



Output Dependency (1)
An output dependency, also known as write-after-write (WAW), occurs when the ordering of 
instructions will affect the final output value of a variable.

1. B = 3

2. A = B + 1 

3. B = 7

As with anti-dependencies, output dependencies are name dependencies. That is, they may be 
removed through renaming of variables, as in the below modification of the above example: 

1. B2 = 3

2. A = B2 + 1

3. B = 7



Output Dependency (2)

Example 2:

for(j = 0; j < n; j++) 
c[j] = j; 
c[j+1] = 5; 



Checking Dependencies:
Greatest Common Divisior:

A linear Diophantine equation:

a1*x1 + a2*x2 +... + an*xn =c 

has an integer solution x1, x2,..., xn iff GCD (a1,a2,.., an) divides c. 

E.g.

2*x1 -2*x2 =1 

GCD(2,-2) =2, 2 cannot divide 1. So, there is no integer solution for the equation above. 

https://en.wikipedia.org/wiki/Linear_Diophantine_equation


GCD - Test

It is based on the observation that if a loop carried dependency exists between X[a*i + b] 
and X[c*i + d] (where X is the array; a, b, c and d are integers, and i is the loop variable), 
then GCD (c, a) must divide (d – b). For example, in the following loop, a=2, b=3, c=2, d=0 
and GCD(a,c)=2 and (d-b) is -3. Since 2 does not divide -3, no dependence is possible. 

for (i=1; i<=100; i++)
{
X[2*i+3] = X[2*i] + 50;

}



GCD - Test
Loop code in general: 

for (int i=0; i<n; i++)
{
s1   a[x*i+k] = ...;
s2   ... = a[y*i+m];               

}

To decide if there is loop carried dependence (two array references access the same memory 
location and one of them is a write operation) between a[x*i+k] and a[y*i+m].

x*i1 +k = y*i2+m (Or x*i1 -y*i2 = m -k)

If GCD(x,y) divides (m-k), then there may exist some dependency in the loop statement s1 and s2. If 
GCD(x,y) does not divide (m-k) then both statements are independent and can be executed at 
parallel. Similarly this test is conducted for all statements present in a given loop. 



Simple Example
for i = 1 to n1:  

a[2*i] = b[i] + c[i];

d[i] = a[2*i-1];

Are there i1 and i2 such that 1 <= i1 <= i2 <= 10 an

2*i1 = 2*i2-1

or, equivalently 

2*i2 - 2*i1 = 1

There is an integer solution if and only if gcd(2,-2) divides 1. This is not the case, so no 
dependence.



Checking via Graphs
Example:

for (i = 0; i < 4; i++)
for (j = 0; j < 4; j++)

a[i][j] = a[i][j−1] ∗ x;

end

end

Iteration-space Traversal Graph (ITG)



Checking Dependencies:
OMEGA Test:

http://www.cs.cmu.edu/~emc/spring06/home1_files/p4-pugh.pdf

http://www.cs.umd.edu/~pugh/papers/omega.pdf

Mainly based on Integer Programming.

Further Tests:

ftp://ftp.keldysh.ru/K_student/AUTO_PARALLELIZATION/DATA_DEPENDENCE/Pact99.pdf

http://www.cs.cmu.edu/~emc/spring06/home1_files/p4-pugh.pdf
http://www.cs.umd.edu/~pugh/papers/omega.pdf


Optimization Methods
Loop Unrolling (Compiler, Programmer) = Instruction Level Parallism (ILP)

Vectorization (Compiler, Programmer)

Threading (Mostly Programmer)

Memory Layout (Mostly programmer)

Cache-Oblivious Programming (Mostly programmer)

Branch Prediction (Compiler but can be improved through the programmer)



Loop Unrolling



Loop Unrolling
After Loop Unrolling:

int x; 

for (x = 0; x < 100; x += 5 )

{

delete(x);

delete(x + 1);

delete(x + 2);

delete(x + 3);

delete(x + 4);

}

Normal Loop 

int x;
for (x = 0; x < 100; x++)
{

delete(x);
}



IF = Instruction Fetch, ID = Instruction Decode, EX = Execute, MEM = Memory access, 
WB = Register write back

Pseudo Code:
int pipelines = 5;
for(int i = 0; i < length; i += pipelines){

s += (x + y);
s += (x + y);
s += (x + y);
s += (x + y);
s += (x + y);

}



Vectorization



Threading



Threading + Vectorization



Cache-oblivious Programming

https://sites.google.com/site/cachememory2011/memory-hierarchy



Memory Access
Row Access:

Column Access:

https://eli.thegreenplace.net/2015/memory-layout-of-multi-dimensional-arrays



Simple Example (Column and Row Access):

void AddMatrixByCol(Matrix& y, const Matrix& x) { 

assert(y.M == x.M); 

assert(y.N == x.N); 

for (size_t col = 0; col < y.N; ++col) {

for (size_t row = 0; row < y.M; ++row) { 

y.data[row * y.N + col] += x.data[row * x.N + col]; 

} 

} 

} 

void AddMatrixByRow(Matrix& y, const Matrix& x) { 
assert(y.M == x.M);

assert(y.N == x.N); 

for (size_t row = 0; row < y.M; ++row) { 

for (size_t col = 0; col < y.N; ++col) { 

y.data[row * y.N + col] += x.data[row * x.N + col]; 

} 

}

} 

https://eli.thegreenplace.net/2015/memory-layout-of-multi-dimensional-arrays



Memory Access

https://eli.thegreenplace.net/2015/memory-layout-of-multi-dimensional-arrays



Branch Prediction



Parallel Programming on CPUs and GPUs
Programming on CPUs:
◦ Shared vs Distributed Memory Systems 

◦ MPI (Multiprocessor Interface) vs OpenMP, TBB (Thread Building Blocks), Cilk

Programming on GPUs:
◦ OpenCL vs CUDA: 

◦ Generic Programming (AMD, ..) vs Proprietary Programming (Nvidia)

◦ OpenCL: Programming on CPUs, GPUs, FPGAs

◦ CUDA (Nvidia): Programming on GPUs



CPU vs. GPU in Detail

https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html



Different Kinds of Parallelism
Instruction Level Parallelism (ILP)

Vectorization

Multiprocesser System:
◦ Shared Memory (Uniform Memory Access)

◦ Distributed Memory (None Uniform Memory Access)



MULTIPLE PROCESSOR SYSTEMS

(a) A shared-memory multiprocessor. (b) A message-passing multicomputer. (c) A -wide 
area distributed system.



Shared Memory (OpenMP) vs Distributed 
Memory System (MPI)



Uniform vs. None Uniform Memory Acces



MPI (Message Parsing Interface):



Structure of Communication (MPI)



Structure of Communication (OpenMP)



Structure of Communication (CUDA)



MPI and CUDA



Grid of Thread Blocks / Memory 
Hierarchy



Simple Vector Operation

// Simple Kernel //PSEUDO C Code
void Vector_Addition (int *C , const int *A , int *B, int N)
{

for(int i=0; i < N; ++i)
{

C[i] = A[i] + B[i];
}

}



Kernel for Mulitprocessor Systems
// Perform an element-wise addtion of A and B and store in C.
// There are N elements per array and NP CPU cores.
void Vector_Addition (int *C , const int *A , const int *B, int N, int NP, int tid)
{

int ept = N/NP; 
for(int i=tid*ept; i < (tid+1)*ept; ++i)

{
C[i] = A[i] + B[i];

}
}



Kernel for CUDA
// CUDA Kernel for Vector Addition
__global__ void Vector_Addition ( const int *dev_a , const int *dev_b , int *dev_c)
{

//Ge the id of thread within a block
unsigned int tid = blockIdx.x * blockDim.x + threadIdx.x ; 

while ( tid < N ) // check the boundry condition for the threads 
{

dev_c [tid] = dev_a[tid] + dev_b[tid] ; 
tid+= blockDim.x * gridDim.x ; 

}
}



How to get Thread Position (tid) ?

int offset = x + y * DIM;

tid = threadIdx.x + blockIdx.x * blockDim.x.



Getting enough Threads ?
In fact, we will launch too few threads whenever N is not an exact multiple of 128. This is 
bad. We actually want this division to round up. There is a common trick to accomplish this 
in integer division without calling ceil(). We actually compute (N+127)/128 instead of N/128. 
Either you can take our word that this will compute the smallest multiple of 128 greater 
than or equal to N or you can take a moment now to convince yourself of this fact.

Callin the Kernel:

Vector_Addition <<< ( N + 127 ) / 128, 128 >>> ( dev _ a, dev _ b, dev _ c );

Because of our change to the division that ensures we launch enough threads, we will 
actually now launch too many threads when N is not an exact multiple of 128.

Restrict Memory Access in the Kernel: 

if (tid < N)

c[tid] = a[tid] + b[tid];



CPU vs GPU Floating Point Operations



The End


