
MASTERARBEIT / MASTER’S THESIS

Titel der Masterarbeit / Title of the Master’s

"Experimental Studies of the Influence of
Silent Data Corruption on FT-GMRES"

verfasst von / submitted by

Markus Gruber BSc

angestrebter akademischer Grad / in partial fulfilment of the requirements for the

degree of

Diplom-Ingenieur (Dipl.-Ing.)

Wien, 2017 / Vienna 2017

Studienkennzahl lt. Studienblatt 066 940

/ degree programme code as it appears on the student record sheet:

Studienrichtung lt. Studienblatt / Masterstudium Scientific Computing

/ degree programme as it appears on the student record sheet:

Betreut von / Supervisor: Assoz. Prof. Dr. Wilfried Gansterer, Privatdoz.

Contents
1 Abstract . 15

2 Summary . 16

2.1 Motivation of this work and problem setting . 16

2.2 The problem which is considered in this master work 16

2.3 The importance of this problem . 16

2.4 The current state of the FT-GMRES approach . 17

2.5 The scientific gap . 17

2.6 The main focus of this master work . 18

2.7 The results of this master work . 18

3 Synopsis . 19

4 Related Work . 22

4.1 Topics related to fault tolerant iterative linear solvers (overview) 22

4.2 Selective Reliability . 22

4.2.1 Flexible Conjugate Gradient (F-CG) . 22

4.2.2 Flexible GMRES (F-GMRES) . 23

4.3 ABFT (Algorithm Based Fault Tolerance) . 25

4.3.1 ABFT for the GMRES solver . 25

4.3.2 ABFT for the Conjugate Gradient (CG) solver 26

4.3.3 Fault tolerance through equilibrated matrices 26

4.4 Partial recomputing . 27

4.5 Self-stabilization . 28

4.6 Questions . 28

5 Background . 29

5.1 Iterative methods . 29

5.2 Krylov subspace methods . 31

5.2.1 Introduction . 31

5.2.2 The Jacobi method . 32

5.2.3 From Jacobi method to Krylov subspace methods 33

5.2.4 From recursion of the residuum to Krylov subspace methods 34

5.2.5 Definition of the Krylov subspace . 34

5.2.6 Definition of Krylov subspace methods 35

5.2.7 Preconditioning of Krylov subspace solvers 36

5.2.8 Inexact Krylov methods . 37

5.2.9 The Conjugate Gradient (CG) and Steepest Descent (SD) method 38

5.2.10 The GMRES method . 42

5.3 The condition number of a matrix A . 49

5.4 Problem description of exa scale computing . 49

5.5 The statistical and sandbox reliability model . 52

5.6 Classification of faults and failures . 53

5.7 Bitflips in practice . 55

6 Flexible and Fault Tolerant GMRES (F and FT-solvers) 60

6.1 Flexible solvers (F-solvers) . 60

6.1.1 Newton’s fixed point method . 60

6.1.2 The Flexible Conjugate Gradient (F-CG) method 61

6.1.3 The Flexible Generalized Minimal Residual (F-GMRES) method 62

6.1.4 Determining the number of operations for (F-)GMRES and (F-)CG 63

6.1.5 Workloads of the outer and inner solver of F-CG for various matrix den-

sities . 64

6.1.6 Workload distribution of F-CG for various densities of non-zero elements 65

6.1.7 Workloads of the outer and inner solver of F-GMRES for various matrix

densities . 66

6.1.8 Workload distribution of F-GMRES for various densities of non-zero el-

ements . 67

6.1.9 Workload distribution of F-GMRES for various densities of non-zero el-

ements . 68

6.1.10 Workload distribution of F-GMRES for various densities of non-zero el-

ements and for a fixed outer iteration . 69

6.1.11 Workload distribution between F-GMRES and GMRES 70

6.2 Fault Tolerant Iterative Linear solvers (FT-solvers) 71

6.2.1 Fault tolerance and selective reliability 71

6.2.2 Relation between iterative refinement and sand boxing 72

6.2.3 Some assumptions on the unreliable model 73

6.2.4 The Fault Tolerant GMRES (FT-GMRES) method 74

6.3 Dealing with rank deficiency in F-GMRES/FT-GMRES 75

6.3.1 Additional failure modes for the F-GMRES 75

6.3.2 Recover strategies for the FT-GMRES . 75

6.4 Relaxation strategies for nested Krylov methods (F(T)-GMRES) 76

6.4.1 Relaxation strategies for inexact Krylov subspace methods 76

6.4.2 Nested inexact Krylov methods . 77

6.4.3 Some notes on the preconditioned GMRES solver 79

7 Experiments related to GMRES and Flexible GMRES (F-GMRES) 80

7.1 Relation between condition number and number of outer iterations of GMRES

and Flexible GMRES (F-GMRES) . 80

7.1.1 Problem 1, relation between condition number and preconditioning by

the inner solver of the F-GMRES with random values as initial vector . . 81

7.1.2 Problem 2, relation between condition number and preconditioning by

the inner solver of the F-GMRES with random values as initial vector . . 82

7.1.3 Problem 1, relation between condition number and preconditioning by

the inner solver of the F-GMRES with zero values as initial vector 83

7.1.4 Problem 2, relation between condition number and preconditioning by

the inner solver of the F-GMRES with zero values as initial vector 84

7.2 Different test cases for GMRES and Flexible GMRES (F-GMRES) 85

7.2.1 GMRES and F-GMRES on different diagonal matrices

- Inner solver initialized with zero values 85

7.2.2 GMRES and F-GMRES on different diagonal matrices with random val-

ues - Inner solver initialized with zero values 86

8 Injecting errors in Fault Tolerant GMRES (FT-GMRES) 87

8.1 Introduction . 87

8.2 Error Injection Methology . 88

9 Experiments related to Fault Tolerant GMRES (FT-GMRES) 89

9.1 Faulting on the first and last Modified Gram Schmidt (MGS) iteration 89

9.1.1 Faulting on the first MGS-iteration (with linear separated eigenvalues)

- Inner solver initialized with random values 89

9.1.2 Faulting on the last MGS-iteration (with linear separated eigenvalues)

- Inner solver initialized with random values 90

9.2 Testing of all positions of the orthogonalization with single faults 91

9.2.1 Faulting on a matrix with low condition number - Inner solver initialized

with zero values . 92

9.2.2 Faulting on a matrix with high condition number - Inner solver initial-

ized with zero values . 93

9.2.3 Faulting on a matrix with high condition number - Inner solver initial-

ized with zero values . 94

9.2.4 Faulting on a matrix with very high condition number - Inner solver

initialized with zero values . 95

9.2.5 Faulting on a matrix with very high condition number - Inner solver

initialized with zero values . 96

9.3 Testing of all positions of the orthogonalization with multiple faults 97

9.3.1 Faulting on a matrix with low condition number along index i - Inner

solver initialized with zero values . 98

9.3.2 Faulting on a matrix with low condition number along index j - Inner

solver initialized with zero values . 99

9.3.3 Faulting on a matrix with high condition number along index i - Inner

solver initialized with zero values . 100

9.3.4 Faulting on a matrix with high condition number along index j - Inner

solver initialized with zero values . 101

9.4 Comparison between the 2D Poisson and adder_dcop_63 problem 102

9.4.1 Residuum curves of GMRES and F-GMRES for solving the 2D Poisson

and adder_dcop_63 problem - Inner solver initialized with zero values . 103

9.4.2 Residuals and approximation errors for solving the 2D Poisson problem

and faulting with error type 1 - Inner solver initialized with with zero

values . 104

9.4.3 Residuals and approximation errors for solving the 2D Poisson problem

and faulting with error type 2 - Inner solver initialized with with zero

values . 105

9.4.4 Residuals and approximation errors for solving the adder_dcop_63 prob-

lem and faulting with error type 1 - Inner solver initialized with with

zero values . 106

9.4.5 Residuals and approximation errors for solving the adder_dcop_63 prob-

lem and faulting with error type 2 - Inner solver initialized with with

zero values . 107

9.4.6 Faulting on the first MGS-iteration during solving the 2D Poisson prob-

lem - Inner solver initialized with zero values 108

9.4.7 Faulting on the first MGS-iteration during solving the adder_dcop_63

problem - Inner solver initialized with zero values 109

9.4.8 Faulting on the Givens rotation during solving the 2D Poisson problem

- Inner solver initialized with zero values 110

9.4.9 Faulting on the Givens rotation during solving the adder_dcop_63 prob-

lem - Inner solver initialized with zero values 111

9.4.10 Eigenvalue distribution of the 2D Poisson and adder_dcop _63 matrix . . 112

9.5 Faulting while solving the 2D Poisson and adder_dcop_63 problem with and

without ILU-preconditioning in the inner solver of the FT-GMRES 113

9.5.1 Workload distribution of F-GMRES with ILU-preconditioning (2D Pois-

son matrix) . 114

9.5.2 Residuum curves of GMRES and Flexible GMRES for solving the 2D

Poisson matrix with/without ILU-preconditioning and different initial-

izations for the inner solver . 115

9.5.3 Faulting with different kinds of faults and without ILU-preconditioning

during solving the 2D Poisson problem - Inner solver initialized with

random values . 116

9.5.4 Faulting with different kinds of faults and without ILU-preconditioning

during solving the 2D Poisson problem - Inner solver initialized with

zero values . 117

9.5.5 Faulting with different kinds of faults and ILU-preconditioning during

solving the 2D Poisson problem - Inner solver initialized with random

values . 118

9.5.6 Faulting with different kinds of faults and ILU-preconditioning during

solving the 2D Poisson problem - Inner solver initialized with zero

values . 119

9.5.7 Faulting with different kinds of faults and without ILU-preconditioning

during solving the adder_dcop_63 problem - Inner solver initialized

with random values . 120

9.5.8 Faulting with different kinds of faults and without ILU-preconditioning

during solving the adder_dcop_63 problem - Inner solver initialized

with zero values . 121

9.5.9 Faulting with different kinds of faults and ILU-preconditioning during

solving the adder_dcop_63 problem - Inner solver initialized with ran-

dom values . 122

9.5.10 Faulting with different kinds of faults and ILU-preconditioning during

solving the adder_dcop_63 problem - Inner solver initialized with zero

values . 123

9.6 Faulting while solving the 2D Poisson and adder_dcop_63 problem with flexible

preconditioning by the inner solver of the FT-GMRES 124

9.6.1 The absolute change between the current and previous iteration in the

inner solver of the F-GMRES - Inner solver initialized with zero values . 125

9.6.2 The relative change between the first and current iteration in the inner

solver of the F-GMRES - Inner solver initialized with zero values 126

9.6.3 Adaptive controlling the number of iterations for the inner solver of the

F-GMRES (flexible preconditioning) - Inner solver initialized with zero

values . 127

9.6.4 Adaptive controlling the number of iterations for the inner solver of the

FT-GMRES (flexible preconditioning) - Inner solver initialized with zero

values . 128

9.6.5 Faulting during solving the 2D Poisson problem with flexible precondi-

tioning by the inner solver - Inner solver initialized with zero values . . 129

9.6.6 Faulting during solving the 2D Poisson problem with flexible precondi-

tioning by the inner solver - Inner solver initialized with zero values . . 130

9.6.7 Number of flops for solving the 2D Poisson problem with flexible pre-

conditioning by the inner solver and faulting - Inner solver initialized

with zero values . 131

9.6.8 Number of flops for solving the 2D Poisson problem with flexible pre-

conditioning by the inner solver and faulting - Inner solver initialized

with zero values . 132

9.6.9 Number of flops for solving the 2D Poisson problem with flexible pre-

conditioning by the inner solver and faulting - Inner solver initialized

with zero values . 133

9.6.10 Faulting during solving the adder_dcop_63 problem with flexible pre-

conditioning by the inner solver - Inner solver initialized with zero values134

9.6.11 Faulting during solving the adder_dcop_63 problem with flexible pre-

conditioning by the inner solver - Inner solver initialized with zero values135

9.6.12 Number of flops for solving the adder_dcop_63 problem with flexible

preconditioning by the inner solver and faulting - Inner solver initial-

ized with zero values . 136

9.6.13 Number of flops for solving the adder_dcop_63 problem with flexible

preconditioning by the inner solver and faulting - Inner solver initial-

ized with zero values . 137

9.6.14 Number of flops for solving the adder_dcop_63 problem with flexible

preconditioning by the inner solver and faulting - Inner solver initial-

ized with zero values . 138

9.6.15 Further experiments for solving the 2D Poisson and adder_dcop_63

problem with flexible preconditioning and faulting - Inner solver ini-

tialized with zero values . 139

9.6.16 Some notes on the flexible preconditioning with/without faulting 140

9.7 Results of some experiments with the corresponding matrix properties 141

9.8 Faulting with single faults while solving further problems (symmetric, unsym-

metric) . 142

9.8.1 Faulting during solving the 2D Poisson problem for different kinds of

faults - Inner solver initialized with zero values 142

9.8.2 Faulting during solving the Pres_Poisson problem for different kinds of

faults - Inner solver initialized with zero values 143

9.8.3 Faulting during solving the Kuu problem for different kinds of faults -

Inner solver initialized with zero values 144

9.8.4 Faulting during solving the Na5 problem for different kinds of faults -

Inner solver initialized with zero values 145

9.8.5 Faulting during solving the adder_dcop_63 problem for different kinds

of faults - Inner solver initialized with zero values 146

9.8.6 Faulting during solving the circuit_2 problem for different kinds of

faults - Inner solver initialized with zero values 147

9.8.7 Faulting during solving the mult_dcop_03 problem for different kinds

of faults - Inner solver initialized with zero values 148

9.8.8 Faulting during solving the chem_master1 problem for different kinds

of faults - Inner solver initialized with zero values 149

9.8.9 Faulting during solving the ILL_Stokes problem for different kinds of

faults - Inner solver initialized with zero values 150

9.9 Faulting with single faults while solving further preconditioned problems with

ILU-factorization (symmetric, un-symmetric) . 151

9.9.1 Faulting during solving the Pres_Poisson problem for different kinds of

faults - Inner solver initialized with zero values 151

9.9.2 Faulting during solving the Kuu problem for different kinds of faults -

Inner solver initialized with zero values 152

9.9.3 Faulting during solving the Na5 problem for different kinds of faults -

Inner solver initialized with zero values 153

9.9.4 Faulting during solving the circuit_2 problem for different kinds of

faults - Inner solver initialized with zero values 154

9.9.5 Faulting during solving the chem_master1 problem for different kinds

of faults - Inner solver initialized with zero values 155

9.10 Faulting with single faults while solving further problems with applying flexible

preconditioning by the inner solver of the FT-GMRES (symmetric, un-symmetric)156

9.10.1 Number of flops for solving the Pres_Poisson problem with flexible pre-

conditioning by the inner solver and faulting - Inner solver initialized

with zero values . 156

9.10.2 Number of flops for solving the Kuu problem with flexible precondition-

ing by the inner solver and faulting - Inner solver initialized with zero

values . 157

9.10.3 Number of flops for solving the Na5 problem with flexible precondition-

ing by the inner solver and faulting - Inner solver initialized with zero

values . 158

9.10.4 Number of flops for solving the circuit_2 problem with flexible precon-

ditioning by the inner solver and faulting - Inner solver initialized with

zero values . 159

9.10.5 Number of flops for solving the mult_dcop_03 problem with flexible pre-

conditioning by the inner solver and faulting - Inner solver initialized

with zero values . 160

9.10.6 Number of flops for solving the chem_master1 problem with flexible

preconditioning by the inner solver and faulting - Inner solver initial-

ized with zero values . 161

9.10.7 Number of flops for solving the Ill_Stokes problem with flexible precon-

ditioning by the inner solver and faulting - Inner solver initialized with

zero values . 162

9.11 Faulting with multiple faults while solving further problems (un-symmetric) . . . 163

9.11.1 Faulting during solving the circuit_2 problem along index i 163

9.11.2 Faulting during solving the circuit_2 problem along index j 164

9.11.3 Faulting during solving the mult_dcop_03 problem along index i 165

9.11.4 Faulting during solving the mult_dcop_03 problem along index j 166

9.11.5 Faulting during solving the ILL_Stokes problem along index i 167

9.11.6 Faulting during solving the ILL_Stokes problem along index j 168

9.12 Different disturbed Hessenberg matrices for single faults 169

9.12.1 Introduction . 169

9.12.2 Different disturbed Hessenberg matrices for solving the 2D Poisson

problem . 170

9.12.3 Different disturbed Hessenberg matrices for solving the Pres_Poisson

problem . 171

9.12.4 Different disturbed Hessenberg matrices for solving the Kuu problem . 172

9.12.5 Different disturbed Hessenberg matrices for solving the adder_dcop_63

problem . 173

9.12.6 Different Hessenberg matrices for solving the adder_dcop_63 problem

(no faulting) . 174

9.12.7 Different disturbed Hessenberg matrices for solving the circuit_2 prob-

lem . 175

9.12.8 Different disturbed Hessenberg matrices for solving the mult_dcop_03

problem . 176

9.12.9 Different disturbed Hessenberg matrices for solving the chem_master1

problem . 177

9.12.10 Sensibility of banded matrices in the presence of a fault (2D Poisson) . . 178

9.12.11 Sensibility of banded matrices in the presence of a fault (2D Poisson) . . 179

10 Improvements and recommendations for Fault Tolerant GMRES (FT-GMRES) 180

10.1 Introduction . 180

10.1.1 Faulting without any improvements on a diagonal matrix with high con-

dition number - Inner solver initialized with zero values 183

10.1.2 Faulting on a diagonal matrix with high condition number and using

the norm - Inner solver initialized with zero values 184

10.1.3 Faulting on a diagonal matrix with high condition number and using

the relative change - Inner solver initialized with zero values 185

10.2 Fault detection through the relative change between two residuals 186

10.2.1 Introduction . 186

10.2.2 Computation of the relative change during solving the 2D Poisson prob-

lem - Inner solver initialized with random values 187

10.2.3 Computation of the relative change during solving the 2D Poisson prob-

lem - Inner solver initialized with zero values 188

10.2.4 Computation of all relative changes during solving the 2D Poisson prob-

lem - Inner solver initialized with random and zero values 189

10.2.5 Computation of the relative change during solving the adder_dcop_63

problem - Inner solver initialized with random values 190

10.2.6 Computation of the relative change during solving the adder_dcop_63

problem - Inner solver initialized with zero values 191

10.2.7 Computation of all relative changes during solving the adder_dcop_63

problem - Inner solver initialized with random and zero values 192

10.2.8 Approximation errors with and without correcting stagnating conver-

gence for solving the 2D Poisson problem (error type 1) - Inner solver

initialized with zero values . 193

10.2.9 Approximation errors with and without correcting stagnating conver-

gence for solving the 2D Poisson problem (error type 2) - Inner solver

initialized with zero values . 194

10.2.10 Fault detection during solving the 2D Poisson problem with different

values for the relative change - Inner solver initialized with zero values 195

10.2.11 Some notes on the parameters for fault detection in the case of the

FT-GMRES . 196

10.3 Fault detection through checking the structure of the Hessenberg matrix 197

10.3.1 Introduction . 197

10.3.2 Absolute lowest value of the Hessenberg matrix in the inner solver of

the F-GMRES for solving different problems - Inner solver initialized

with zero values . 198

10.3.3 Absolute largest value of the Hessenberg matrix in the inner solver of

the F-GMRES for solving different problems - Inner solver initialized

with zero values . 199

10.3.4 Fault detection during solving the 2D Poisson problem with checking

the structure of the Hessenberg matrix - Inner solver initialized with

zero values . 200

10.3.5 Fault detection during solving the Pres_Poisson problem with checking

the structure of the Hessenberg matrix - Inner solver initialized with

zero values . 201

10.3.6 Fault detection during solving the Kuu problem with checking the struc-

ture of the Hessenberg matrix - Inner solver initialized with zero values 202

10.3.7 Fault detection during solving the Na5 problem with checking the struc-

ture of the Hessenberg matrix - Inner solver initialized with zero values 203

10.3.8 Fault detection during solving the adder_dcop_63 problem with check-

ing the structure of the Hessenberg matrix - Inner solver initialized

with zero values . 204

10.3.9 Fault detection during solving the circuit_ 2 problem with checking the

structure of the Hessenberg matrix - Inner solver initialized with zero

values . 205

10.3.10 Fault detection during solving the mult_dcop_03 problem with checking

the structure of the Hessenberg matrix - Inner solver initialized with

zero values . 206

10.3.11 Fault detection during solving the chem_master1 problem with check-

ing the structure of the Hessenberg matrix - Inner solver initialized

with zero values . 207

10.3.12 Fault detection during solving the ILL_Stokes problem with checking

the structure of the Hessenberg matrix - Inner solver initialized with

zero values . 208

10.4 The Extended Fault Tolerant GMRES (EFT-GMRES) method (Pseudo Code) . . . 209

11 Conclusions and final results . 210

12 Parameters . 216

13 Appendix . 218

13.1 Formulas for computing the number of flops for (F-)GMRES and (F-)CG (Matlab) 218

13.2 Preconditioned GMRES algorithm . 219

13.3 Faulting with FT-GMRES while solving the 2D Poisson matrix 221

13.3.1 Inner solver initialized with the previous computed basis vector 221

13.3.2 Inner solver initialized with random values 222

13.3.3 Residuum curves for solving the 2D Poisson matrix 223

13.4 Abstract (German - short version) . 226

List of Tables
1 Comparison between iterative and direct methods. 30

2 Summary of high energy neutron soft error rates. 58

3 Assembler code for testing of bit-flips. 59

4 Number of bit-flips induced by disturbance on a 2GB module. 59

5 Some properties of the 2D Poisson and adder_dcop_63 matrix. 102

6 Worst overhead for a single fault and various disturbances for solving different matri-

ces. 141

7 Possible methods to detect and correct faults in the inner solver of the FT-GMRES

those which are known so far (from the authors view). 180

List of Figures
1 Illustration of the power wall problem based on Intel slides. 50

2 The history for change in flops (floating point operations per second) from 1990-2014. 51

3 The sandbox reliability model. 52

4 Taxonomy of faults. 53

5 Classification of the possible outcomes of reading a faulty bit in a microprocessor

system. 54

6 Transistor size in the past, present and future with relative fault rates. 55

7 Operational hours and fault rates per DRAM vendor. 56

8 Effect of aging of the DRAM. 57

9 Workloads of the outer and inner solver for different numbers of iterations of the F-CG. 64

10 Ratio of workloads between the outer and inner solver of the F-CG. 65

11 Workloads of the outer and inner solver for different numbers of iterations of the

F-GMRES. 66

12 Ratio of workloads between the outer and inner solver of the F-GMRES. 67

13 Ratio of workloads between the outer and inner solver of the F-GMRES. 68

14 Ratio of workloads between the outer and inner solver of the F-GMRES. 69

15 Ratio of workloads between F-GMRES and GMRES. 70

16 Illustration of the conceptual framework of Fault Tolerant Iterative Linear solvers. . . 72

17 Problem 1 with linear separated eigenvalues for GMRES and F-GMRES, random val-

ues as initial vector. 81

18 Problem 1, speed up for solution times with random values as initial vector. 81

19 Problem 2 with linear separated eigenvalues for GMRES and F-GMRES, random val-

ues as initial vector. 82

20 Problem 2, speed up for solution times with random values as initial vector. 82

21 Problem 1 with linear separated eigenvalues for GMRES and F-GMRES, zero values

as initial vector. 83

22 Problem 1, speed up for solution times with zero values as initial vector. 83

23 Problem 2 with linear separated eigenvalues for GMRES and F-GMRES, zero values

as initial vector. 84

24 Problem 2, speed up for solution times with zero values as initial vector. 84

25 Residuum curves of (F-)GMRES for different diagonal matrices with linear separated

values. 85

26 Residuum curves of (F-)GMRES for different diagonal matrices with random values. . 86

27 Different error types which are used for observing the behavior of the FT-GMRES. . . 87

28 Two possibilities of faulting during the orthogonalization process in the FT-GMRES. . . 88

29 Faulting with error type 1 on the first MGS-iteration. 89

30 Faulting with error type 2 on the first MGS-iteration. 89

31 Faulting with error type 1 on the first MGS-iteration. 90

32 Faulting with error type 2 on the first MGS-iteration. 90

33 Matrix which visualizes where faulting is applied during the orthogonalization process. 91

34 Faulting on all positions with single faults during solving a diagonal matrix with con-

dition number 142.5. 92

35 Faulting on all positions with single faults during solving a diagonal matrix with con-

dition number 1425. 93

36 Faulting on all positions with single faults during solving a diagonal matrix with con-

dition number 1425. 94

37 Faulting on all positions with single faults during solving a diagonal matrix with con-

dition number 14250. 95

38 Faulting on all positions with single faults during solving a diagonal matrix with con-

dition number 14250. 96

39 Matrix which visualizes where faulting is applied with multiple faults along index j. . . 97

40 Matrix which visualizes where faulting is applied with multiple faults along index i. . . 97

41 Faulting on all positions (multiple faults) during solving a diagonal matrix with condi-

tion number 142.5. 98

42 Faulting on all positions (multiple faults) during solving a diagonal matrix with condi-

tion number 142.5. 99

43 Faulting on all positions (multiple faults) during solving a diagonal matrix with condi-

tion number 1425. 100

44 Faulting on all positions (multiple faults) during solving a diagonal matrix with condi-

tion number 1425. 101

45 Sample matrices for comparison (2D Poisson and adder_dcop_63 matrix). 102

46 Residuum curves for solving the 2D Poisson problem with the GMRES and F-GMRES

solver. 103

47 Residuum curves for solving the adder_dcop_63 problem with the GMRES and F-

GMRES solver. 103

48 Residuum and approximation curves for solving the 2D Poisson matrix. 104

49 Residuum and approximation curves for solving the 2D Poisson matrix. 105

50 Residuum and approximation curves for solving the adder_dcop_63 matrix. 106

51 Residuum and approximation curves for solving the adder_dcop_63 matrix. 107

52 Faulting with error type 1 on the first MGS-iteration during solving the 2D Poisson

matrix. 108

53 Faulting with error type 2 on the first MGS-iteration during solving the 2D Poisson

matrix. 108

54 Faulting with error type 1 on the first MGS-iteration during solving the

adder_dcop_63 matrix. 109

55 Faulting with error type 2 on the first MGS-iteration during solving the

adder_dcop_63 matrix. 109

56 Faulting with error type 1 during applying the Givens rotation and solving the 2D

Poisson matrix. 110

57 Faulting with error type 2 during applying the Givens rotation and solving the 2D

Poisson matrix. 110

58 Faulting with error type 1 during applying the Givens rotation and solving the

adder_dcop _63 matrix. 111

59 Faulting with error type 2 during applying the Givens rotation and solving the

adder_dcop _63 matrix. 111

60 Eigenvalue distribution of the 2D Poisson matrix for a size of 100 × 100. 112

61 Eigenvalue distribution of the adder_dcop_63 matrix. 112

62 Workloads for the inner and outer solver of the F-GMRES in the case of solving the

2D Poisson matrix. 114

63 Ratio of workloads of the F-GMRES in the case of solving the 2D Poisson matrix. . . . 114

64 Residuum curves (outer solver) for solving the 2D Poisson problem with and without

ILU -preconditioning. 115

65 Faulting on all positions with single faults and without ILU -preconditioning during

solving the 2D Poisson matrix. 116

66 Faulting on all positions with single faults and without ILU -preconditioning during

solving the 2D Poisson matrix. 117

67 Faulting on all positions with single faults and with ILU -preconditioning during solv-

ing the 2D Poisson matrix. 118

68 Faulting on all positions with single faults and with ILU -preconditioning during solv-

ing the 2D Poisson matrix. 119

69 Faulting on all positions with single faults and without ILU -preconditioning during

solving the adder_dcop_63 matrix. 120

70 Faulting on all positions with single faults and without ILU -preconditioning during

solving the adder_dcop_63 matrix. 121

71 Faulting on all positions with single faults and with ILU -preconditioning during solv-

ing the adder_dcop_63 matrix. 122

72 Faulting on all positions with single faults and with ILU -preconditioning during solv-

ing the adder_dcop_63 matrix. 123

73 Matrix which visualizes where faulting is applied during the orthogonalization pro-

cess (total flops). 124

74 The absolute change between the current and previous iteration in the case of the 2D

Poisson matrix. 125

75 The absolute change between the current and previous iteration in the case of the

adder_dcop_63 matrix. 125

76 The relative change between the first and current iteration in the case of the 2D

Poisson matrix. 126

77 The relative change between the first and current iteration in the case of the adder_dcop_63

matrix. 126

78 Solving the 2D Poisson matrix with controlling the number of inner iterations. 127

79 Solving the adder_dcop_63 matrix with controlling the number of inner iterations. . . 127

80 Solving the 2D Poisson matrix with controlling the number of inner iterations and

faulting. 128

81 Solving the adder_dcop_63 matrix with controlling the number of inner iterations and

faulting. 128

82 Faulting on all positions with single faults and flexible preconditioning during solving

the 2D Poisson matrix (overhead in iterations). 129

83 Faulting on all positions with single faults and flexible preconditioning during solving

the 2D Poisson matrix (overhead in iterations). 130

84 Faulting on all positions with single faults and flexible preconditioning during solving

the 2D Poisson matrix (overhead in flops). 131

85 Faulting on all positions with single faults and flexible preconditioning during solving

the 2D Poisson matrix (overhead in flops). 132

86 Faulting on all positions with single faults and flexible preconditioning during solving

the 2D Poisson matrix (overhead in flops). 133

87 Faulting on all positions with single faults and flexible preconditioning during solving

the adder_dcop_63 matrix (overhead in iterations). 134

88 Faulting on all positions with single faults and flexible preconditioning during solving

the adder_dcop_63 matrix (overhead in iterations). 135

89 Faulting on all positions with single faults and flexible preconditioning during solving

the adder_dcop_63 matrix (overhead in flops). 136

90 Faulting on all positions with single faults and flexible preconditioning during solving

the adder_dcop_63 matrix (overhead in flops). 137

91 Faulting on all positions with single faults and flexible preconditioning during solving

the adder_dcop_63 matrix (overhead in flops). 138

92 Further experiments for solving the 2D Poisson and adder_dcop_63 problem with ap-

plying flexible preconditioning by the inner solver of the FT-GMRES. 139

93 Faulting on all positions with single faults during solving the 2D Poisson matrix. 142

94 Faulting on all positions with single faults during solving the Pres_Poisson matrix. . . 143

95 Faulting on all positions with single faults during solving the Kuu matrix. 144

96 Faulting on all positions with single faults during solving the Na5 matrix. 145

97 Faulting on all positions with single faults during solving the adder_dcop_63 matrix. . 146

98 Faulting on all positions with single faults during solving the circuit_2 matrix. 147

99 Faulting on all positions with single faults during solving the mult_dcop_03 matrix. . . 148

100 Faulting on all positions with single faults during solving the chem_master1 matrix. . . 149

101 Faulting on all positions with single faults during solving the ILL_Stokes matrix. 150

102 Faulting on all positions with single faults and ILU -preconditioning during solving

the Pres_Poisson matrix. 151

103 Faulting on all positions with single faults and ILU -preconditioning during solving

the Kuu matrix. 152

104 Faulting on all positions with single faults and ILU -preconditioning during solving

the Na5 matrix. 153

105 Faulting on all positions with single faults and ILU -preconditioning during solving

the circuit_2 matrix. 154

106 Faulting on all positions with single faults and ILU -preconditioning during solving

the chem_master1 matrix. 155

107 Faulting on all positions with single faults and flexible preconditioning during solving

the Pres_Poisson matrix (overhead in flops). 156

108 Faulting on all positions with single faults and flexible preconditioning during solving

the Kuu matrix (overhead in flops). 157

109 Faulting on all positions with single faults and flexible preconditioning during solving

the Na5 matrix (overhead in flops). 158

110 Faulting on all positions with single faults and flexible preconditioning during solving

the circuit_2 matrix (overhead in flops). 159

111 Faulting on all positions with single faults and flexible preconditioning during solving

the mult_dcop_03 matrix (overhead in flops). 160

112 Faulting on all positions with single faults and flexible preconditioning during solving

the chem_master1 matrix (overhead in flops). 161

113 Faulting on all positions with single faults and flexible preconditioning during solving

the Ill_Stokes matrix (overhead in flops). 162

114 Faulting on all positions with multiple faults along index i during solving the circuit_2

matrix. 163

115 Faulting on all positions with multiple faults along index j during solving the circuit_2

matrix. 164

116 Faulting on all positions with multiple faults along index i during solving the mult_dcop_03

matrix. 165

117 Faulting on all positions with multiple faults along index j during solving the mult_dcop_03

matrix. 166

118 Faulting on all positions with multiple faults along index i during solving the ILL_Stokes

matrix. 167

119 Faulting on all positions with multiple faults along index j during solving the ILL_Stokes

matrix. 168

120 The final Hessenberg matrix (of the inner solver) without a fault in the case of solving

a symmetric problem, after applying all Givens rotations. 169

121 The final Hessenberg matrix (of the inner solver) without a fault in the case of solving

an un-symmetric problem, after applying all Givens rotations. 169

122 Different disturbed Hessenberg matrices for solving the 2D Poisson problem. 170

123 Different disturbed Hessenberg matrices for solving the Pres_Poisson problem. 171

124 Different disturbed Hessenberg matrices for solving the Kuu problem. 172

125 Different disturbed Hessenberg matrices for solving the adder_dcop_63 problem. . . . 173

126 Different structures of the Hessenberg matrix for solving the adder_dcop_63 problem. 174

127 Different disturbed Hessenberg matrices for solving the circuit_2 problem. 175

128 Different disturbed Hessenberg matrices for solving the mult_dcop_03 problem. 176

129 Different disturbed Hessenberg matrices for solving the chem_master1 problem. . . . 177

130 Different disturbed Hessenberg matrices for solving the 2D Poisson problem. 178

131 Different disturbed Hessenberg matrices for solving the 2D Poisson problem. 179

132 Faulting with error type 1 on a diagonal matrix with no improvements. 183

133 Faulting with error type 2 on a diagonal matrix with no improvements. 183

134 Faulting with error type 1 on a diagonal matrix with using the norm. 184

135 Faulting with error type 2 on a diagonal matrix with using the norm. 184

136 Faulting with error type 1 on a diagonal matrix with using the relative change. 185

137 Faulting with error type 2 on a diagonal matrix with using the relative change. 185

138 Illustration of a possibility of how to compute the relative change and reusing the

solution vector x. 186

139 The relative change during solving the 2D Poisson matrix and faulting with 10150. . . . 187

140 The relative change during solving the 2D Poisson matrix and faulting with 10−300 . . . 187

141 The relative change during solving the 2D Poisson matrix and faulting with 10150. . . . 188

142 The relative change during solving the 2D Poisson matrix and faulting with 10−300. . . 188

143 All relative changes in the inner solver during solving the 2D Poisson matrix. 189

144 All relative changes in the inner solver during solving the 2D Poisson matrix. 189

145 The relative change during solving the adder_dcop_63 matrix and faulting with 10150. . 190

146 The relative change during solving the adder_dcop_63 matrix and faulting with 10−300. 190

147 The relative change during solving the adder_dcop_63 matrix and faulting with 10150. . 191

148 The relative change during solving the adder_dcop_63 matrix and faulting with 10−300. 191

149 All relative changes during solving the adder_dcop_63 matrix. 192

150 All relative changes during solving the adder_dcop_63 matrix. 192

151 Approximation errors for solving the 2D Poisson problem with and without fault de-

tection (error type 1). 193

152 Approximation errors for solving the 2D Poisson problem with and without fault de-

tection (error type 2). 194

153 Fault detection during solving the 2D Poisson matrix with different values for the

relative change. 195

154 Absolute lowest value of the Hessenberg matrix (band part) in the inner solver of the

F-GMRES for solving different (un-)symmetric problems. 198

155 Absolute lowest value of the Hessenberg matrix (upper triangular part) in the inner

solver of the F-GMRES for solving different un-symmetric problems. 198

156 Absolute largest value of the Hessenberg matrix (band part) in the inner solver of the

F-GMRES for solving different (un-)symmetric problems. 199

157 Absolute largest value of the Hessenberg matrix (upper triangular part) in the inner

solver of the F-GMRES for solving different un-symmetric problems. 199

158 Fault detection during solving the 2D Poisson problem for different kinds of faults. . . 200

159 Fault detection during solving the Pres_Poisson problem for different kinds of faults. . 201

160 Fault detection during solving the Kuu problem for different kinds of faults. 202

161 Fault detection during solving the Na5 problem for different kinds of faults. 203

162 Fault detection during solving the adder_dcop_63 problem for different kinds of faults. 204

163 Fault detection during solving the circuit_2 problem for different kinds of faults. . . . 205

164 Fault detection during solving the mult_dcop_03 problem for different kinds of faults. 206

165 Fault detection during solving the chem_master1 problem for different kinds of faults. 207

166 Fault detection during solving the ILL_Stokes problem for different kinds of faults. . . 208

167 Faulting with error type 1 on the first MGS during solving the 2D Poisson matrix. . . . 221

168 Faulting with error type 2 on the first MGS during solving the 2D Poisson matrix. . . . 221

169 Faulting with error type 1 on the first MGS during solving the 2D Poisson matrix. . . . 222

170 Faulting with error type 2 on the first MGS during solving the 2D Poisson matrix. . . . 222

171 Trend of the explicit residuum and faulting with error type 1 during solving the 2D

Poisson matrix. 223

172 Trend of the explicit residuum and faulting with error type 2 during solving the 2D

Poisson matrix. 223

173 Trend of the explicit residuum and faulting with error type 1 during solving the 2D

Poisson matrix. 224

174 Trend of the explicit residuum and faulting with error type 2 during solving the 2D

Poisson matrix. 224

175 Trend of the explicit residuum and faulting with error type 1 during solving the 2D

Poisson matrix. 225

176 Trend of the explicit residuum and faulting with error type 2 during solving the 2D

Poisson matrix. 225

1 Abstract
Iterative methods give the possibility to solve the problem Ax = b for the vector x in an efficient

way for sparse matrices A. There are different computational steps which have to be done in these

methods. Sometimes it can happen that any of those is affected by bit-flips and thus the algorithm

yields wrong results. These errors in the main memory occur if a bit changes its value from 0 to 1 or

from 1 to 0 with and without any external influence because of the fact that there is poor isolation

between two transistors where each single one influences the others. The computer system can

potentially detect and correct bit-flips with so called Error Correcting Codes (ECC memory) which

is relatively costly in terms of additional power consumption and memory storage of about 12.5 %

against non-ECC memory [1][2]. This fact is mainly related for correcting a single bit-flip for a 64

byte memory block (1 byte = 8 bits) with 8 additional bytes (a ratio of 8:1). It causes a performance

lose of about 5 % - 15% [1][2] depending on the workload and utilization of the memory.

In some numerical methods there is maybe the possibility to decrease this constraint because

only a few computational steps must be done with high reliability. These methods will lead to fault

tolerant iterative linear solvers (see section 6.2). These are methods where only a few parts of the

used algorithm must be protected against bit-flips to ensure high enough reliability. The Flexible

GMRES (F-GMRES) [3] as well the Fault Tolerant GMRES (FT-GMRES) [4] solver are mainly based

on the classical GMRES algorithm [5] where these methods use it as an inner/outer approach. In

these methods the GMRES solver (see section 5.2.10) is applied for the outer as well for the inner

solver whereas bit-flips are only allowed in the inner solver of the FT-GMRES (see section 6.2.4).

One key aspect of this work on the F-GMRES solver (see section 6.1.3) is when does the F-

GMRES outperform the standard GMRES solver in terms of operations shown with some synthetic

and real problems. It can be shown that using the flexible method also helps to decrease the

number of needed operations massively for those used problems in this master work. The F-GMRES

performs sometimes better but as well worse than using the standard GMRES solver.

The other part of this master work is to analyze the convergence behavior of the FT-GMRES in

the presence of bit-flips during applying the matrix vector operation respective orthogonalization

process (hi,j). For each position of hi,j (line 5 - 10 of algorithm 6) different perturbations (Eperturbed)

are induced in the inner solver of the FT-GMRES (line 4 of algorithm 14) with different kinds of

errors (see section 8) to observe the behavior for single and as well multiple faults. In the case of a

fault for positions of hi,j a new h̄i,j is computed such that hi,j is multiplied with Eperturbed. Pertur-

bations where Eperturbed is lower than 1 have less impact on the FT-GMRES whereas perturbations

with Eperturbed greater than 1 or more are more problematic for all values of hi,j .

Another purpose of this work is also to give some recommendations (see section 10.1) for the

FT-GMRES based on what is known so far but with further researches to detect and correct more

faults in the inner solver of the FT-GMRES because only perturbations larger than the norm (||.||2)

[6] of matrix A could be detected and corrected during applying the sparse vector operation [4].

One additional improvement (see section 10.2) which is done in this master work is that with the

help of observing the residuum [7] (||r||2 = ||Ax − b||2) of the inner solver it is possible to protect

the outer solver from (some) additional iterations which extends the current option(s) to detect and

correct also perturbations smaller than the norm (||.||2). Furthermore this approach can be also

used to protect the whole inner solver from faulting which is a novel against previous works for

the FT-GMRES so far [4]. One additional possibility would be to check the structure (see section

10.3) of the so called Hessenberg matrix (see figure 48) which is build during the orthogonalization

process (hi,j) in the inner solver of the FT-GMRES. This approach looks really promising because a

lot more faults could be corrected especially in the case of solving symmetric problems, matrix A

Experimental Studies on FT-GMRES Page 15 of 226

is equal to its transpose (A = AT), but if a fault was not detected then there was low overhead.

Flexible preconditioning (different iterations for the inner solver) helps to decrease the number

of floating point operations but has less effect on the overhead because if a fault occurs then there

must be done additional operations which results in the same costs as an not corrected error.

2 Summary
2.1 Motivation of this work and problem setting
Mainly the motivation of this work is driven by the expectation that through better manufacturing

processes the distance between transistors will shrink and the negative influence between them

will increase that’s why the number of bit-flips will increase in future computer systems [8][9]. Bit-

flips in the DRAM can be detected and corrected through the so called ECC (Error Correcting Code)

memory this will lead to systems with higher reliability but applying ECC memory will also increase

the energy requirements. Furthermore because of this fact the increase of bit-flips will also lead

to higher energy requirements and some additional restrictions to build faster and much more

complex computer clusters. That’s why it is expected that correcting bit-flips in computer systems

will be become more and more costly through rising the power consumption for this reason new

techniques must be explored to go against this technology trend. This additional problem should

be negated as much as possible through new explored techniques.

One way is perhaps to define sections where everything should be computed with high enough

reliability and the other parts of the used solver should run with lower reliability this approach

is also called selective reliability in section 4.1. Most of the computations should be done with

lower reliability to decrease the energy requirements whereas the part of the algorithm with high

reliability should ensure correctness of the computed result. In some numerical methods there is

the possibility to apply selective reliability because of the fact that two solvers can be combined

together as an inner/outer approach which leads to flexible methods (see section 6.1). In selective

reliability the inner solver is mainly used to do the main work with low reliability and perhaps

to speed up the computations through preconditioning whereas the outer solver has to check for

correctness with high reliability. A further generalization of flexible methods will lead to fault

tolerant iterative linear solvers through selective reliability (see section 6.2).

2.2 The problem which is considered in this master work
The main problem about this master work is focusing on the question of how to detect stagnating

convergence of the FT-GMRES solver where faults lead to a bad behavior in the presence of bit-flips

and to poor preconditioning of the inner solver (line 4 of algorithm 14). Especially in the case of

the FT-GMRES where bit-flips in the inner solver can lead to a total flattening of the residual curve

(||r2|| = ||Ax−b||2) in the inner solver and in general to a lower reduction of the residual for solving

the problem Ax = b in the presence of a fault. Stagnating convergence leads to the problem of a

slow down of the used solver to solve the problem Ax = b or in the worst case to a not satisfying

solution x. Furthermore every undetected and not corrected fault in the inner solver will perhaps

lead to more iterations for the outer solver of the FT-GMRES but it will also rise those energy re-

quirements which must be avoided in every case. The main problem about poor preconditioning

from the inner solver is how to detect stagnating convergence caused by bit-flips to ensure higher

reliability of the outer solver but as well for the whole FT-GMRES solver. That’s why one additional

question of this master work is how to protect the whole FT-GMRES solver such that the outer

solver is "nearly" unaffected from flipping a bit which means further fault detectors are searched.

2.3 The importance of this problem
Stagnating convergence also occurs in different contexts of iterative linear solvers especially in

the FT-GMRES the main problem is just how to protect the inner solver from poor preconditioning

Experimental Studies on FT-GMRES Page 16 of 226

such that the outer solver perhaps never converges to a reasonable solution, this question is really

important for this master work. The main problem is just how to detect and correct stagnating

convergence of the inner solver such that the FT-GMRES solver shows the same behavior for the

number of outer iterations in a failure case as the F-GMRES solver without flipping a bit. That’s

why a further question is just how to achieve the purpose such that in every case the Fault Tolerant

GMRES (FT-GMRES) has equal energy requirements or even decreases it against the Flexible

GMRES solver (F-GMRES) to save energy in the best case without any additional disadvantage.

In the case of the totally unprotected FT-GMRES solver the overhead (additional iterations) be-

cause of a fault in the inner solver is approximately the same or even more like using ECC memory

to correct faults. There are different possibilities to protect the outer solver from additional iter-

ations but the inner solver can be always restarted even if the situation is not clear which leads

perhaps to less iterations for the outer solver especially when no fault is occurred. A possibility to

achieve this aim is observing the residual (||r||2 = ||Ax−b||2) which can be used to protect the outer

solver. There must be done further researches but observing the residual is just one additional rec-

ommendation which leads to further problems like how to determine the right parameters for doing

a restart of the inner solver and a better preconditioning for the outer solver of the FT-GMRES.

2.4 The current state of the FT-GMRES approach
Fault detection is really important for the FT-GMRES solver as well for any other fault tolerant

method. The whole fault methodology for the FT-GMRES is described in section 8 which is the

same like used from Sandia Labs in [4]. Faulting is mainly done during the orthogonalization

process of hi,j (line 5 - 10 of algorithm 6) in the inner solver about the FT-GMRES (line 4 of

algorithm 14). The orthogonalization process and the sparse matrix vector product need the most

operations of the GMRES solver but it is also hard to protect these two sections from flipping a

bit. In this model faulting is mainly done with hi,j such that a perturbed h̄i,j is computed with

h̄i,j = hi,j × ||A||2 × Eperturbed where Eperturbed is the real disturbance during a fault. This faulting

methodology will affect the whole inner solver except matrix A and the right hand side b and is

restricted for floating point values, it is the first (important) computation. Sandia Labs already did

some experiments about the FT-GMRES solver in [4] but in this approach it was only possible to

detect and correct large perturbations greater than the norm (||.||2) of matrix A during the matrix

vector operation respective hi,j , just for example the multiplied disturbance has a magnitude of

the exponent of about 150 (Eperturbed = 10150). Small disturbance factors have a magnitude of the

exponent of about −300 (Eperturbed = 10−300) and with the basis of 10 which are also large faults.

Faults lower than the used norm (||.||2) of matrix A during the sparse matrix vector operation

respective orthogonalization process (hi,j) are undetected and not corrected in [4] and will lead

to the problem of stagnating convergence at some specific positions in the inner solver of the FT-

GMRES. This leads to the problem that for some specific positions during the orthogonalization

process of computing hi,j the solution begins to totally stagnate if a fault occurs. This kind of

error detection introduced in [4] can be only used to check faults during the sparse matrix product

and orthogonalization process (hi,j) but it doesn’t protect the inner solver at all especially from

stagnating convergence and poor preconditioning. There are already some researches done for

detecting stagnating convergence like in [7] which are applied in other contexts but with the aim to

detect stagnating convergence in the standard GMRES approach but not in the FT-GMRES solver.

2.5 The scientific gap
The scientific gap is mainly that only some specific kinds of faults can be detected in the FT-

GMRES solver where fault detection is restricted on the sparse vector operation (y = Ax) at the

moment. Those kinds of errors which can be only detected are disturbances greater than the norm

Experimental Studies on FT-GMRES Page 17 of 226

(||.||2) of matrix A where Eperturbed is greater than 1 in [4]. The sparse matrix vector computation

respective orthogonalization process (hi,j) needs a lot of operations which gives the possibility to

reduce the power consumption a lot but still there must be more possibilities found to protect more

parts of the inner solver of the FT-GMRES from flipping a bit. Perturbations lower than the norm

(||.||2) of matrix A where Eperturbed is lower than 1 cannot be detected and corrected during the

sparse matrix vector operation in the inner solver of the FT-GMRES at the moment in [4] which

is also a focus of this work in-depended of the used fault detector. There are no possibilities for

the FT-GMRES solver to protect the whole (outer) solver from additional iterations at the moment.

Another scientific gap is how does the overhead depend on the position (hi,j) where the fault occurs

for single and multiple faults and does preconditioning help to decrease the overhead.

2.6 The main focus of this master work
The main problem which is considered in this master work is how to protect the inner solver of the

FT-GMRES (line 4 of algorithm 14) from flipping some bits. One fault detector based on the norm

(||.||2) of the used matrix A gives the possibility to detect large perturbations during the sparse

matrix vector operation which is in general not applicable because computing ||.||2 is nearly the

same as solving Ax = b but it is also possible to use other norms. This fault detector is mainly

related to the fact because in the GMRES a matrix vector product is applied (y = Ax) so by using

the norm (||.||2) it follows that ||y||2 ≤ ||A||2||x||2 by knowing that ||x||2 = 1 the vector y can be

at least ||y||2 ≤ ||A||2 in a failure free case (see section 8). There are no fault detectors for small

perturbation factors (Eperturbed < 1) because in the case of the (FT-)GMRES solver it means that

the end residuum (||r||2 = ||Ax − b||2) is already known which can be achieved with it. In [7] an

approach is considered for how to detect stagnating convergence but only for the standard GMRES

solver which can be adapted for the inner solver of the FT-GMRES and can be used to detect small

and as well large perturbations. This work also tries to answer how does the position of a fault

during the orthogonalization process (hi,j) affect the overhead. In this work there are also further

possibilities searched for fault detection and correction in the inner solver of the FT-GMRES.

2.7 The results of this master work
The main result is that stagnating convergence can be detected in the inner solver of the FT-

GMRES, the problem is just to decide if this is the case or not. There are mainly two problems

solved in this master work while the relative change between two residuals in the inner solver was

observed. For the first case (2D Poisson matrix) it was possible to detect stagnating convergence

whereas in the second problem (adder_dcop_63 matrix [10]) it was not the case. The first matrix

has a different behavior as the second problem because for this problem the relative change be-

tween two residuals is approximately the same which means the residual reduction in the inner

solver is nearly the same from one iteration to the next iteration. In the case of the second problem

(adder_dcop_63 matrix) the relative change is not always the same between two iterations which

makes fault detection really hard because of the convergence behavior. Furthermore it means that

the convergence behavior must be known before solving the problem with fault detection.

One far better approach is to check the structure of the Hessenberg matrix (see figure 48)

because if a fault occurs in the inner solver of the FT-GMRES a deviation from the real structure

can be observed which looks really promising but there must be two different cases considered.

Not for each fault a change of the structure could be observed which means not every bit-flip can

be detected for computing hi,j . Values of Eperturbed = 10150 and Eperturbed = 10−300 are mostly

used to inject faults. Small perturbation coefficients (Eperturbed < 1) will mainly lead to stagnating

convergence on some specific positions like during computing the value of h1,2 and h2,3 whereas

large perturbation coefficients (Eperturbed > 1) are more problematic during the whole computation.

Experimental Studies on FT-GMRES Page 18 of 226

3 Synopsis
Related Work: In section 4 a summary about different scientific papers is given mainly about

fault tolerant iterative linear solvers and those different techniques which are used in it. Further-

more in section 4.1 topics of concepts about fault tolerance are more explicit explained.

Iterative methods: In section 5.1 the main classification of iterative methods is given whereas

in general iterative methods can be classified in two kinds of solvers (stationary and non-stationary).

Krylov subspace methods: In section 5.2 Krylov methods are discussed in general which are

considered as iterative (non-stationary) methods. These methods are mainly used if matrix A is

sparse to solve Ax = b, from 5.2.1 to section 5.2.8 Krylov methods are discussed in detail.

The Conjugate Gradient (CG) and Steepest Descent method (SD): In section 5.2.9 the

basics about the Steepest Descent (SD) (see section 5.2.9.1) and the Conjugate Gradient (CG) (see

section 5.2.9.2) are introduced, only the CG solver is considered as a Krylov subspace solver.

The GMRES method: In section 5.2.10 the GMRES solver is introduced which can be used to

solve an equation system Ax = b for any type of matrix which is an advantage against the CG.

Problem description of exa scale computing: In section 5.4 most of the problems about HPC

(High Performance Computing) are discussed and which limitations come from it like the power

wall problem problem and fault tolerance which is a problem for huge compute clusters.

Bit-flips in practice: In section 5.7 a summary of different scientific papers about bit-flips in

the DRAM is given which shows the effect of different influences on the number of bit-flips.

Flexible solvers (F-solvers): In section 6.1 the idea behind flexible solvers is shown. In flexible

methods there are always two iterative solvers one outer and one inner solver. The outer solver has

to check for convergence with high reliability whereas the inner solver should do the main work.

Fault Tolerant Iterative Linear solvers (FT-solvers): In section 6.2 the basics about Fault

Tolerant Iterative Linear solvers are explained. This kind of solver is mainly based on the flexible

solver but the main contrast is that in the inner solver bits are now allowed to flip which causes

some overhead. This overhead (additional iterations or floating point operations) can be huge.

Dealing with rank deficiency in F-GMRES/FT-GMRES: In section 6.3 there is a short sum-

mary for the F-GMRES and FT-GMRES of how to handle poor preconditioning of the inner solver

which may affect the outer solver negatively especially the built Hessenberg matrix (see section

5.2.10) to solve the problem Ax = b, unlucky preconditioning can abort the whole computation.

Relaxation strategies for nested Krylov methods: In section 6.4 nested inexact Krylov

methods are discussed. This topic is important for the initialization of the inner solver for flexible

methods but as well important for the preconditioning of nested Krylov methods like F-GMRES.

Experiments related to GMRES and Flexible GMRES (F-GMRES)1: In section 7 there

are different experiments done but there are mainly two problems solved in section 7.1 with the

Flexible GMRES and GMRES solver. These problems are solved where the computing time is

compared against the GMRES solver. There is also the relation between the condition number (see

formula 72) and the number of outer iterations of the F-GMRES shown for different initializations

of the inner solver. In section 7.2 there is a comparison between F-GMRES and GMRES on different

diagonal matrices for observing the convergence behavior.

Injecting errors in Fault Tolerant GMRES (FT-GMRES)1: Section 8 describes how faults

are injected in FT-GMRES and why this specific method is used. It mainly describes the fault

methodology how faults are caused in the inner solver of the FT-GMRES during the sparse matrix

vector operation and orthogonalization process (hi,j).

1..new topics which are not explored

Experimental Studies on FT-GMRES Page 19 of 226

Experiments related to Fault Tolerant GMRES (FT-GMRES)2: Section 9 is mainly about the

Fault Tolerant GMRES (FT-GMRES) where several experiments are done. This section has different

subsections which are explained afterwards. There are different experiments done for single and

multiple faults and other parts of the used GMRES algorithm.

Faulting on the first and last Modified Gram Schmidt iteration2: There are some exper-

iments done in section 9.1.1 and 9.1.2 to determine the behavior in the case of a single fault. In

this case the inner solver of the FT-GMRES is initialized with random values for vector wj(w0). The

Gram Schmidt method is mainly used in the GMRES solver (see algorithm 3 and 4).

Testing of all positions of the orthogonalization (hi,j) with single faults1: Section 9.2

shows the influence of single faults during the sparse matrix vector operation and orthogonalization

process (hi,j) in the inner solver of the FT-GMRES. There is mainly a heat map used which shows

the number of outer iterations on all positions for a specific kind of perturbation and for a single

fault. These heat maps visualize the number of outer iterations if in the inner solver is a fault.

Testing of all positions of the orthogonalization (hi,j) with multiple faults1: Section 9.3

shows the influence of multiple faults during the sparse matrix vector operation and orthogonal-

ization process (hi,j) in the inner solver of the FT-GMRES. There is mainly a heat map used which

visualizes the number of outer iterations if on and after a position (hi,j) multiple faults occur.

Comparison between the 2D Poisson and adder_dcop_63 matrix1: Section 9.4 does a

comparison and short analysis between two different types of matrices namely the 2D Poisson and

adder_dcop_63 [10] matrix. The adder_dcop_63 matrix has a different behavior as the 2D Poisson

matrix if a fault occurs with a small perturbation coefficient (Eperturbed = 10−300). This matrix has

the ability to tolerate more faults because small perturbation coefficients have less impact on the

number of outer iterations for the FT-GMRES whereas a better behavior can be also observed for

large perturbations. Faulting during solving the 2D Poisson matrix shows a similar behavior like in

[4]. This is an indicator that both implementations (in this master work and in [4]) have the same

initialization (w0) for the inner solver (line 4 of algorithm 14) of the FT-GMRES such that the inner

solver should be initialized with zero values for vector wj(w0) to ensure fast convergence.

In [4] there was solved the mult_dcop_03 [10] matrix instead of the adder_dcop_63 problem but

if a relative residuum (||r||2 = ||Ax−b||2/||b||2) of 10−8 should be achieved for the first problem then

the number of outer iterations is exactly the same (28), also for solving the 2D Poisson problem.

Faulting while solving the 2D Poisson and adder_dcop_63 problem with and without

ILU-preconditioning in the inner solver of the FT-GMRES1: Section 9.5 shows also the influ-

ence of preconditioning with the ILU -factorization [6] in the inner solver of the FT-GMRES during

solving the 2D Poisson and adder_dcop_63 [10] matrix in the case of a single fault (from section

9.4.6 to 9.5.10). Depending on the initialization of the inner solver and error of factorization the

overhead can be decreased for small perturbations whereas large perturbations are still problem-

atic, faulting in the inner solver will always lead to a worse residuum.

Faulting while solving the 2D Poisson and adder_dcop_63 problem with flexible pre-

conditioning by the inner solver of the FT-GMRES1: In section 9.6 are some experiments done

with applying flexible preconditioning in the presence of a single fault while solving the 2D Poisson

and adder_dcop_63 matrix. Flexible preconditioning mainly helps to decrease the needed number

of operations to converge but in the case of a fault in the inner solver the overhead (additional

iterations) in floating point operations can be very high. The overhead is estimated hard because

the additional work is counted in flops (floating point operations) not in additional iterations.

Results of some experiments (worst overhead) with the corresponding matrix properties1:

2..there are already existing works

Experimental Studies on FT-GMRES Page 20 of 226

In section 9.7 there is a short summary about some experiments and properties of all used matri-

ces where the worst overhead is shown for experiments which are discussed and not discussed

in detail in this master work. This section is done to get a better overview about the overhead in

the presence of a single fault for different matrices [10] and the corresponding properties. The

overhead for a single fault can be specified with 0 to 300 % where about 15 - 20 % are mostly seen.

Faulting with single faults while solving further problems (symmetric, un-symmetric)1:

In section 9.8 there are mainly experiments done for solving symmetric and un-symmetric problems

and determining the overhead in the presence of a single fault for different kinds of faults and

matrices. This section is done for section 10.3 where the overhead is shown for the same matrices

but with fault detection. All used matrices are taken from [10] except the 2D Poisson matrix.

Faulting with single faults while solving further preconditioned problems with ILU-

factorization (symmetric, un-symmetric)1: In section 9.9 there are further experiments done

with four different matrices where ILU -preconditioning is applied to show the effect of precondi-

tioning with other matrices but also to compare these matrices without ILU -preconditioning.

Faulting with single faults while solving further problems with flexible preconditioning

by the inner solver of the FT-GMRES (symmetric, un-symmetric)1: In section 9.10 there

are additional experiments done with seven matrices for applying flexible preconditioning in the

presence of a single fault. Flexible preconditioning mainly helps to decrease the needed number

of operations but has no influence on the observed overhead.

Faulting with multiple faults while solving further problems (un-symmetric)1: In section

9.11 there are experiments done for solving un-symmetric and symmetric problems and determin-

ing the overhead in the presence of multiple fault for different kinds of faults and matrices. There

are mainly two matrices solved in this section to show the effect multiple faults, if all values of a

row or column faults during computing the Hessenberg matrix in the inner solver of the FT-GMRES.

Different disturbed Hessenberg matrices1: In section 9.12 there are different Hessenberg

matrices shown after applying the Givens rotation (see section 5) and for a single fault. This section

shows how the structure changes for the Hessenberg matrix and for different kinds of problems in

the presence of a single fault which can be used for fault detection (see section 10.3).

Improvements and recommendations for Fault Tolerant GMRES (FT-GMRES)1: In sec-

tion 10 there is mainly an overview (in section 10.1) to summarize what is known so far for error

and fault detection but with also some further improvements for the FT-GMRES which are done in

this master work. There is also a comparison between different approaches like using the norm

(||.||2) of matrix A or detecting stagnating convergence, some are applicable some aren’t.

Fault detection through the relative change between two residuals1: In section 10.2 an

approach is considered to determine the parameters for detecting stagnating convergence in the

inner solver of the FT-GMRES. There are also some experiments done with the 2D Poisson and

adder_dcop_63 matrix to show which faults can be detected or not during the sparse matrix vector

operation and orthogonalization process (hi,j) in the inner solver of the FT-GMRES. The overhead

can be decreased depending on the threshold value of the relative change and used problem.

Fault detection through checking the structure of the Hessenberg matrix1: In section

10.3 an additional approach is considered to detect faults through the structure of the so called

Hessenberg matrix (see figure 48). This kind of fault detection is mainly related to the upper part

of the Hessenberg matrix which stores all values of hi,j . There are some experiments done with

different matrices but also with the 2D Poisson and adder_dcop_63 matrix. If a deviation from the

standard case is detected then restarting the inner solver is applied. Overall this approach looks

really promising to detect faults in the inner solver of the FT-GMRES but it is not possible to detect

every fault. Overall this kind of error detection helps to decrease the overhead in most cases.

Experimental Studies on FT-GMRES Page 21 of 226

4 Related Work

4.1 Topics related to fault tolerant iterative linear solvers (overview)

This section should give a short overview which topics are also related to fault tolerant iterative

linear solvers (see section 6.2) but also which are not discussed in detail in this master work.

Self-stabilization [11]: describes the meaning that a system has the property regardless of the

initial state to converge to a legitimate state after a finite number of steps. If this final state should

be legitimate or not depends on some global rules, if those are checked and all according rules are

satisfied then the outcome is that the whole system is in a state which is accepted. Self-stabilization

occurs in different ways but there must be a mechanism which brings the whole system from a not

accepted state in an accepted state. E. Dijkstra describes self-stabilization in computer system in

the year of 1974.

Selective reliability [12]: Selective reliability is the property of a system or application to do

something with a certain reliability but most of the computations are done with a lower reliabil-

ity than the final computed solution. With selective reliability it is still possible to achieve the

same result like where the reliability is not changed but still high enough to ensure correctness

of the computed result. This can be seen as the application of the principles of self-stabilization.

There is still a global checker which has the duty to ensure correctness of the computed result

such that everything is computed with enough high reliability. Checking for correctness must be

also done in high reliability if not the computed result might be wrong because of a lower reliability.

Algorithm Based Fault Tolerance (ABFT) [13]: ABFT is a summary of different techniques

but in contrast to selective reliability everything is done with the same reliability such that faults

during the computation may occur. ABFT is mainly related to checksums but with the appliance

of these different techniques the correct result must be still computed. For example this can be

also a parity bit to know if all bits are even or odd. If this checksum is not found in the computed

result then there must be something wrong during the computation. ABFT is not only related to

fault tolerant iterative linear solvers, it is a summary of different techniques to improve and ensure

a certain reliability of a computer system.

Partial Recomputing [14]: can be also considered as a part of ABFT but it is mostly used in

parallel environments or compute clusters and differ in much aspects from the general idea of

ABFT. The aim of scientific applications is to scale up a problem such that a lot CPU cores must be

used because a scientific problem is often parallelized to decrease the computing time. Because

of the fact that some data are multiple times available on different nodes and CPUs it is possible

to recompute some faulty parts or in the simplest way to do a data exchange between some notes

such that data which are left on a node are restored from other nodes of the compute cluster.

4.2 Selective Reliability
4.2.1 Flexible Conjugate Gradient (F-CG)

In [15] the Flexible CG (F-CG) solver (see section 6.1.2) is introduced similar to the Flexible GM-

RES (F-GMRES, see section 6.1.3) which is also discussed in section 4.2.2. The F-CG is build with

Experimental Studies on FT-GMRES Page 22 of 226

two CG solvers as an inner/outer - approach in [16]. In this method there are always two solvers

one inner and outer solver. The duty of the outer solver (line 3 - 10 of algorithm 10) is to check

for convergence and correctness of the computed solution x to solve the problem Ax = b whereas

the inner solver (line 4 of algorithm 10) should do the main work. Like the CG solver (see sec-

tion 5.2.9.2) the F-CG can be only used to solve problems where the matrix A is positive definite

(positive definiteness means that the product of xTAx is always greater than zero for any vector

x).

The focus of [15] is mainly on the behavior of the coupling between the inner and outer solver

by also considering different problems. The author of [15] figures out that the F-CG gives some

benefits in terms of stability for solving the problem Ax = b if and only if the accuracy of the

computed solution from the inner solver is "high" enough but there will be no advantage if both

solvers have "medium" accuracy. It is not really specified what is considered as "high" or "low"

accuracy especially in terms of operations and when to terminate the inner solver if the solution

of it cannot be improved anymore and to decrease the unnecessary operations caused by the inner

solver. The number of outer iterations depends mainly on the number of iterations from the inner

solver and on the used problem in [15]. There are also some problems solved in this study where

the standard CG solves these problems faster than the F-CG or both are equivalent in the number

of operations which depends mainly on the properties of the used matrix A.

In [12] two different solvers are implemented of the Conjugate Gradient (CG), one with the

ability of self-stabilization (see section 4.1) which is similar to the standard CG solver and one with

the same inner/outer approach mentioned before (see section 6.1.2). The solver with the ability of

self-stabilization is mainly two times the CG solver but there are correction steps done in the second

solver which are done with high reliability in comparison to the first one. Both implementations

have different pros and cons. One main contrast between both solvers is the ability to cope with

different kinds of faults. The CG solver with the property of self - stabilization and the F-CG solver

with the inner/outer approach have similar behaviors if a fault occurs in the mantissa or sign of a

floating point value from the solution vector x, in the inner solver of the F-CG solver. The solver

with the ability of self-stabilization is preferable if a fault occurs in the exponent of the solution

vector x which causes larger errors. The author figures out that this property is mainly related

to the speed of solving Ax = b for the standard CG solver. In [12] only the fault rate is given for

flipping a bit during the sparse matrix vector product but not how high the caused perturbation

is is left. All these comparisons are done with different problems but also for different fault rates

during the sparse matrix vector product which also affects the solution vector x.

In [17] a study is considered which is mainly related to the standard CG solver and about

the computational overhead in iterative methods which is important for designing fault tolerant

iterative linear solvers. It mainly shows the overhead if bit-flips happen in different data and

sections of the used algorithm for different probabilities, just for example like in the matrix A and

the solution vector x. The focus of [17] is also on the overhead which can be caused by bit-flips

where the caused overhead depends more on the section which faults of the used iterative method.

4.2.2 Flexible GMRES (F-GMRES)

In [3] Yousef Saad introduces the principle that the GMRES solver (see section 5.2.10) can also

be applied as an inner/outer - approach which shows some advantages in the case of the achieved

accuracy for the solution vector x. This inner/outer - approach (see section 6.1.3) uses two GMRES

solvers with nesting whereas the inner solver does the main work but the outer solver has to check

the accuracy of the achieved solution x. There are two different test problems in [3] but both illus-

Experimental Studies on FT-GMRES Page 23 of 226

trate that this inner/outer - approach also called Flexible GMRES (F-GMRES) has some advantages

against the classical GMRES solver especially for the achieved accuracy of the solution but by also

decreasing the number of needed operations to converge. This comparison is mainly done with

the classical GMRES solver as the outer solver but also in combination with the Conjugate Gradi-

ent solver (CG) and with ILU -preconditioning [6] for the inner solver. Preconditioning like using

ILU -factorization (matrix A is decomposed in A ≈ LU , see section 5.2.7) is mainly used for speed-

ing up the computation of iterative methods. The first problem of this comparison shows a faster

approximation to the desired solution but with the combination of GMRES and CG as the inner

solver rather than using two times the standard GMRES solver as an inner/outer - approach. In the

case of the second example using the CG and GMRES solver has some advantages against all other

methods especially against applying the standard GMRES solver in terms of needed operations.

Yousef Saad mentioned in the conclusion of [3] that using preconditioning can be "unpre-

dictable". It is not clear why the combination of using GMRES with the CG solver is the best

combination of all these solvers and solved problems maybe because of the fact that both matrices

are positive definite (positive definiteness means that the product of xTAx is always greater than

zero for any chosen vector x). Both combinations of GMRES / GMRES and GMRES / CG outperform

all others, especially the F-GMRES outperforms the GMRES solver in terms of needed operations.

Sandia Labs introduced the Fault Tolerant GMRES (FT-GMRES) in [4][12] with the help of the

Flexible GMRES (F-GMRES). In [4] James Elliot et al. tried to find out the impact of single bit-flips

during preconditioning of the inner solver (line 4 of algorithm 14) in the FT-GMRES and with the

question of how does the computation slows down in the presence of a single fault. The maximum

allowable perturbation which comes from the matrix A depends on the used norm of ||.||2 and

can be used as an error detector during the orthogonalization process (hi,j) respective matrix

vector product which indicates if a bit-flip respective fault happens in the inner solver. In all these

experiments faulting was only done once on some specific positions during the orthogonalization

process of hi,j (see section 8) for two different matrices but only for two positions and cases.

Something which is related to fault tolerance about the (FT-)GMRES can be found in [18] where

different techniques are compared like TMR but by also focusing on this inner/outer - approach.

In Triple Modular Redundancy (TMR) the same computation is done three times where the most

obvious solution is used, this method has a large overhead of about 200 %. The Fault Tolerant

GMRES (FT-GMRES) is mainly based on the Flexible GMRES (F-GMRES), if a problem occurs a

restart can be applied but this will lead to some problems for the computation speed.

This effect can be negated like in [18]. It introduces a new technique based on multiple check-

pointing but by also using this inner/outer approach introduced before. Multiple check-pointing

means that different states of the vector wj (line 4 of algorithm 14) are saved for different iteration

indexes of the inner solver whereas the best promising state of wj is used if a fault occurs. If the

accuracy of the new vector wj is satisfying then the outer solver is allowed to use it computed from

the inner solver. This new technique gives some benefits against partial recomputing (see section

4.1) because of a lower overhead also shown in [18]. Partial recomputing allows to recompute

faulty parts of the solution vector x those can be detected with the help of the residuum (||r||2 =

||Ax − b||2). Multiple check-pointing gives some advantages against partial recomputing if the

probability of faulting is really high whereas partial recomputing should only be applied for low

probabilities of flipping some bits. In this approach [18] there are also two different strategies

applied just one for the outer solver and one for the inner solver. The outer solver checks the

residuum (||r||2 = ||Ax − b||2) whereas in the inner solver it is possible to do some rollbacks if a

fault occurs. A rollback means that all old data of the inner solver like the vector wj are restored.

Because of the need to apply the Givens rotation (see section 5.2.10.3) for both solvers it is not

Experimental Studies on FT-GMRES Page 24 of 226

clear how to store all multiple vectors and how to do a rollback efficiently because a rollback will

also influence the built Hessenberg matrix (see formula 47 and formula 48) of the inner solver

which is maybe not really efficient for the storage place and energy efficiency.

Preconditioning is mainly used for speeding up the computation time in iterative methods, these

methods usually try to decompose the matrix A. In [19] preconditioning for the FT-GMRES is

done where opaque preconditioners are used. Opaque means using an existing preconditioner

because there is no intent to change million lines of code which preconditioners usually have for

iterative methods. Those preconditioners (additive Schwarz domain decomposition [20] and ILU

[6]) are used in a parallel environment, this study tries to answer the question how much additional

iterations does the used preconditioner need if a fault occurs and how does an error from a node

influence the others. In this study bit-flips are not considered as errors they are seen as a bad

output from the preconditioner because of the used matrix A. In general bit-flips are now an

extension of numerical errors but single bit-flips are not considered in this view because single

bit-flips can cause the same error like multiple bit-flips.

This point of view makes a lot of considerations quite easier because it doesn’t matter how often

bit-flips happen but only which error is caused at the end because of a perturbation from flipping

some bits. Something which is not clear in this paper is how faulting is applied for these different

preconditioners which makes reconstructing [19] nearly impossible. The main problem is just that

preconditioners usally have million lines of code. There is also a similar study in [21] which shows

at which bit-position of the exponent with the according floating point representation occurs the

greatest overhead because of a single bit-flip this study is also related to [19] where it comes out

that the highest overhead occurs between the bit positions of 32 and 64 (bit positions which cause

the greatest change of the floating point value).

4.3 ABFT (Algorithm Based Fault Tolerance)

Another topic which is related to fault tolerant iterative linear solvers is ABFT. It stands for Al-

gorithm Based Fault Tolerance (ABFT). The main idea is that with some additional computations

mainly with checksums and with some extensions like check-pointing it is possible to detect and

correct some faulty data. Check-pointing should only be applied for large matrices because the

overhead of additional computations will always be too high for small matrices for paying off its

cost. In mostly all approaches of ABFT there is always an underlying assumption mainly about the

according fault rate. ABFT techniques are also based on different parameters, just to be effective

the right part parameters have to be found.

4.3.1 ABFT for the GMRES solver

The QR-factorization [6] is used for much problems. The QR-process tries to decompose the matrix

A iteratively in A = QR where Q is an orthogonal matrix such that QQT = I with I as the identity

matrix. This kind of process is mainly used for overdetermined and regular equation systems but

this method is also used in the GMRES algorithm (see section 6). The matrix R also denotes an

upper triangular matrix. In [22] a technique is introduced to detect and correct faults in the so

called QR-process. This technique for error detection and correction is mainly based on checksums

where additional rows and columns are added to A = QR such that (A Ae Aw) = Q(R c v) to make

fault detection possible where c and v are vectors and matrix Ae and Aw are additional columns for

matrix A. This kind of approach makes fault detection possible but also fault correction based on

the QR update. This paper doesn’t show how to handle each different fault but the author figures

out that this kind of process mentioned in [22] handles any fault during the QR-factorization.

Experimental Studies on FT-GMRES Page 25 of 226

There is also a performance comparison against the MAGMA library [23] which is used in HPC

for different problems like the matrix vector operation (y = Ax). This kind of approach in [22]

shows really less overhead in comparison to the standard QR-factorization without check-pointing.

It is also possible to extend this approach mentioned in [22] to the standard LU -factorization [6]

which is used for arbitrary dense matrices. ABFT is here applied in the way that fault tolerance

comes from some checksums and trough an additional correction step during the QR-factorization

process if something is computed wrong or bit-flips happen.

4.3.2 ABFT for the Conjugate Gradient (CG) solver

Something which is related to ABFT for the CG solver (see section 6.1.2) can be found in [24].

In this paper there is a hybrid approach applied but without using the principles of the Flexible

Conjugate Gradient (F-CG). In this study the used solver is only based on the standard CG solver but

with applying partial recomputing and as well adopting check-pointing. Partial recomputing can

be used to recompute faulty parts of the solution vector x from the previous computed residuum

(r = Ax − b) whereas check-pointing secures the last state of x. This approach shows that partial

recomputing can be also combined with other techniques to decrease the overhead caused by

some bit-flips. There are still some unreliable sections in this algorithm which are not explicit

mentioned. Fault detection is still applied with high reliability but most of the computations are

done with lower reliability. In this study check-pointing and fault detection is mainly applied with

an additional created fault detector based on the current residuum (r) for the current solution

vector x and with the according right hand side b. Additionally the decision to apply recovering

from a previous checkpoint or to do partial recomputing is based on two computed residuals,

one from the last checkpoint and also on the current faulty solution vector x which belongs to the

current residuum. If the residuum for recovering is lower than the residuum of the current solution

vector x which should be used for partial recomputing then recovering is applied but if not partial

recomputing is applied.

There are also other methods for ABFT which are also called Online-ABFT. Online-ABFT tries

to find optimal parameters for recover and check-pointing with low overhead. In [25] most of

the recover and check-pointing techniques are based on some error assumptions. Through finding

these parameters it is possible to get nearly optimal checkpoints with low overhead which is done in

the case of the Conjugate Gradient (CG) solver. The main problem here is because of the according

probability distribution about the fault rate it is not possible to find these optimal parameters

analytically. In this study there are also some fault detectors used to decide if to do check-pointing

or a recover from a previous state. Some of the math comes from [26] which focus is mainly on

check-pointing. This paper is a generalization of check-pointing and recovering but without using

or focusing on any iterative method.

4.3.3 Fault tolerance through equilibrated matrices

In [27] it comes out that values of matrixAwhich have the same order of magnitude through scaling

the entries the used solvers (in this case the Jacobi method) are less affected through bit-flips. The

effect of bit-flips is decreased through an equilibrium in matrix A and vector b. This technique has

mainly the aim to decrease the norm (||.||∞, absolute largest element of matrix A) to approximately

1 and as well the condition number (see formula 72) of matrix A which can be also done with other

techniques. It also helps to approximate the norm ||.||2 of matrix A better. This method scales all

values of matrix A (and b) with the aim that all of them have a specific magnitude such that the

absolute greatest value (||.||∞) is at most 1, it gives also an upper bound for the caused absolute

error which also decreases the influence of faults in the presence of bit-flips. This method and

Experimental Studies on FT-GMRES Page 26 of 226

the related avoidance technique is linked to the fact that if two vectors u and v are normalized

(||u||2 = 1 and ||v||2 = 1) then the absolute greatest error can be at most 1 (||uv − 1||2 ≤ 1) which is

also related to the fact that small magnitudes will give less errors whereas great magnitudes large

errors. It also helps to speed up the computation time like in the case of the 2D Poisson matrix

of about 50 % or even more less computing time for the Jacobi method (see section 5.2.2) in [28].

For these experiments in [28] there is also low overhead seen in the presence of bit-flips. This

study also explores the relation between the position of a single bit-flip and the observed overhead

because only some specific positions are problematic namely bit-positions greater than 52 (from 0

to 64) which cause large changes.

4.4 Partial recomputing

In general partial recomputing is used in parallel environments because data are multiple times

available on different nodes of the used server, so if one of them crashes some data of the solution

vector x can be reconstructed like in the case of the CG with the help of the other nodes. In

[14] global and local recomputing techniques are introduced which make correcting faulty parts

of the solution vector x possible if those faulty parts are detected. The main contrast is that local

recomputing is used for single bit-flips in contrast global computing is used for multiple faults in

the solution vector x. In [14] the basics about local and global recomputing are shown but with

also some case studies. Partial recomputing can be the way to cope with bit-flips but with a low

fault probability in contrast to other techniques if bit-flips happen with high probability. There are

also different methods used in [14] for recomputing the faulty parts of the solution vector x, mainly

linear and quadratic interpolation both have advantages and disadvantages. Linear interpolation

uses two points to compute a new value between them whereas quadratic interpolation tries to

minimize the total error. Quadratic interpolation is preferable over the linear interpolation method

in most cases but it needs more operations to apply. Furthermore global recomputing is also

preferable over local computing if the number of faults rises on the compute nodes.

Some more general topics about partial recomputing can be found in [29]. The focus of [29] is

mainly to find out some contrasts between several recover and check pointing strategies. The main

outcome is that there is really less influence on the compute overhead if there is a checkpoint at

every iteration step which ensures the solution vector x in the main memory but without using the

hard disk. Partial recomputing makes some sense in parallel environments because data are avail-

able multiple times. As a result of this, in [30] it is introduced parallel recomputing without high

overhead. Data which are multiple times available distributed over different nodes and processors

can be easily used for recomputing. This technique is simple based on a set for each node and as

well on the solution vector x to know which values are left for recomputing. This can cause some

additional overhead in parallel environments but should maintain most of the computation speed

of the used solver by simple interchanging the unknown parts for the vector x and matrix A.

Recomputing can only be applied if bit-flips are detected, maybe through checksums for locating

the faulty parts with hopefully increasing the computing overhead less which is done in [31]. The

aim of it is mainly to detect faults through checksums with an additional vector (c) but it also uses

partial recomputing. The math behind this approach is really simple but there is no comparison

to other techniques, the overhead which is caused by this technique should be really low like

mentioned in this paper. This method is mainly restricted to the matrix vector operation (y = Ax).

So it uses two techniques partial recomputing and error localization with checksums. The main

problem of this approach is that it needs two matrix vector operations, one from the left and one

from the right of matrix A. The additional left one is needed for locating the faulty parts and if the

Experimental Studies on FT-GMRES Page 27 of 226

difference between cT y and (cTA)x is unequal to zero a fault is occurred during computing y = Ax.

4.5 Self-stabilization

Self-stabilization is another topic of this work. In [11] Edsger W. Dijkstra introduced the first

description of what does it mean if a system regardless which kind of system converges to a stable

state. This stable state can be just seen as the correct output or solution vector x from any iterative

method for solving an equation system (Ax = b). He wrote this short paper especially in the context

of distributed communication systems but it has still an important impact to other researches. In

this view there is always a global checker which tests if the current state of the system is correct

or not based on some specific rules. Like in [32] self-stabilizing solvers are an alternative to the

selective reliability solvers introduced in [4]. It is possible to do a correction step in reliable mode

for self-stabilizing solvers if the residuum stops to minimize. This paper is mainly forced on the

Conjugate Gradient (CG, see section 5.2.9.2) and Steepest Descent (SD, see section 5.2.9.1) method

where finding an alternative search direction for lowering the residuum is important.

In [32] it is also shown that methods can have different properties for fault tolerant iterative

linear solvers where some are more invulnerable against bit-flips. Like in [32] the outcome is that

self-stabilizing iterative linear solvers have the ability to cope with faults which cause high changes

in the exponent in contrast to the inner/outer - approach which is used for the Flexible CG.

4.6 Questions

In general flexible methods show a good way to decrease the needed number of operations to

achieve the same accuracy as the standard solver but there are no criteria when to use the standard

solver or the flexible method of it. Especially there are no which can be easily applied in practice

for solving large equation systems to decide which kind of solver is preferable for solving this kind

of matrix. The question is just when does the Flexible CG (F-CG) outperform the standard CG

solver or vice versa in general. In all case studies seen so far the standard CG solver outperforms

the Flexible CG whereas the Flexible GMRES outperforms in most cases the GMRES. Furthermore

there is also the question about the optimal parametes for the flexible methods (F-GMRES) such

that the lowest number of operations is achieved to converge to a specific residuum.

Partial recomputing is mainly used in parallel environments where all processors are distributed

over different clusters and data transfer is mainly done via the network. One question about this

approach is if this kind of fault detection and correction is also applicable on shared memory

systems in an efficient way which means all used processors are on the same node and there is no

data exchange via the network and how will it influence the compute overhead. The main question

is just how will the number of used processors influences the compute overhead because of the data

exchange and the implicit synchronization of all compute cores because of partial recomputing, in

general there are no performance considerations like that.

ABFT is mainly done with checksums which leads to an additional compute overhead especially

during applying the (sparse) matrix vector operation the number of additional operations depends

on the number of non-zero elements of matrix A. So the question is just if the number of elements

rises how does the compute overhead will increase because the compute overhead will depend on

the size of matrix A and the density of the non-zero elements of matrix A.

The self-stabilization approach for the CG solver shows a good convergence behavior against

the Flexible CG if a faults occures in the exponent. This approach is also important for other kinds

of fault tolerant iterative linear solvers but is it also possible to use this property for the GMRES ?

Experimental Studies on FT-GMRES Page 28 of 226

5 Background

5.1 Iterative methods [33][34]

Most iterative methods are based on the fixed point iteration for searching roots of a function f(x).

In the fixed point method a solution is searched with the iterative process of xj+1 = f(xj) where

index j is the current computation step. The vector xj+1 is the new computed solution for a given

function f(xj) with xj as the previous computed value(s). If the solution of xj+1 doesn’t improve

anymore after a number of j steps then the computation is terminated and a solution xj+1 is found

with a given accuracy (i.e. stopped at xj+1 ≈ f(xj)). Iterative methods can be classified in sta-

tionary and non-stationary methods whereas non-stationary methods are related to Krylov methods

(see section 5.2). Krylov methods are mainly used if the matrix A to solve Ax = b has sparse density

of all non-zero values, it means that most values of A are set zero.

Stationary methods: These are iterative methods where the data in the equation to compute xj+1

is fixed, they have the general form of:

xj+1 = Pxj + c. (1)

Matrix P is called the iteration matrix and depends on the used algorithm but matrix P and the

vector c do not change their values for each iteration step j.

Non-stationary methods (Krylov methods): These are methods where the data changes at each

iteration step, they have the general form of:

xj+1 = xj + αjpj . (2)

In this algorithm the vector pj is called the search direction and αj the step length or step size in

the right direction to compute xj+1 where the residual (||r||2 = ||Ax − b||2) should be minimized.

Note that the vector αj and pj change their values for each iteration step j. Non-stationary meth-

ods are considered as Krylov methods an introduction can be found in section 5.2.

For all iterative methods there must be always a stopping criterion if the solution xj doesn’t change

anymore after a finite number of steps. One simple stopping rule would be the residuum which is

defined as ||rj ||2 = ||Axj − b||2 for each iteration j. Therefore one termination criterion would be:

||rj ||2
||b||2

≤ ε whereas ε is called the relative residuum. (3)

In extension of this approach there would be:

||xj+1 − xj ||2
||xj+1||2

≤ δj with δj as the relative change between xj+1 and xj . (4)

To guarantee an improvement δj is decreased from the current iteration to the next iteration as

long as the solution of xj+1 does not change anymore against the previous value xj . If the condition

is not satisfied after j iterations the computation is terminated and a new solution xj+1 is found.

It is common to use a combination of both criteria with δj and ε.

Experimental Studies on FT-GMRES Page 29 of 226

Comparison between iterative and direct methods [35][36]

There are mainly two classifications in direct and iterative methods for solving the linear system

of equations Ax = b where A is a matrix and with the right hand side b for the solution vector x.

Direct methods are mainly based on the Gaussian elimination technique [6]. These methods are

well-known for their robustness within general problems and dense matrices. Direct methods are

not preferable for sparse matrices just because of the elimination process these techniques tend

always to fill in non-zero elements in the matrix A.

These methods based on the Gaussian elimination for solving systems of linear equations try to

compute the exact solution and do always have a certain amount of work with the same number

of operations for the according input size of matrix A. Additionally if a lot of elements of matrix A

are zeros some work is done which is not needed for solving the linear equation system because of

unnecessary floating point operations.

In iterative methods mainly a sequence of matrix vector products is applied that try to better

approximate the solution vector x for each new iteration step. Once a solution is near enough to

the exact solution which minimizes the residuum (||r||2 = ||Ax−b||2) the computation is terminated.

This stopping criterion leads to the main contrast of direct methods because it is just possible to

define arbitrary precision for the solution vector x with iterative methods. Another difference to

direct methods is that iterative methods can sometimes take advantage of the structure about the

problem which is considered in the way how matrices are stored in the memory. In most cases it

leads to the outcome that less computations are done if the used matrix A is sparse where some

additional speed up can be gained with iterative methods in comparison to direct methods.

In practice a lot of problems lead to sparse matrices which means that a lot of values of matrix

A are equal to zero. In this case iterative methods are always faster because of only doing the

relevant work for all non-zero values. One drawback of iterative methods is that in some cases

iterative methods don’t converge to a sufficient solution.

Nevertheless iterative methods are quite faster than direct methods if matrix A is sparse. Just

consider solving a linear system Ax = b for matrix A ∈ Rn×n with size n the direct solution would

take O(n3) whereas the according iterative method would only take O(n2) operations for the same

result. The big O notation in this case is mainly related to the most relevant term which causes the

highest costs (highest number of operations).

Direct methods should also not be applied if the entries of the used matrix A change because the

factorization process of matrix A is really expensive. Therefore direct methods are only applicable

for multiple right hand sides. In table 1 a comparison is done between the most important classes

of solving very large equation systems. This comparison is an estimate over all classes of solvers.

The decision when to use which solver is mainly based on the matrix structure and density of non-

zero elements for matrix A, both processes (direct or iterative) are the main classes respective

methods for solving a liner equation system of Ax = b.

Method Computational Costs Memory Storage

Direct O(n2.3) O(n1.7)

Iterative O(n1.2) O(n)

Table 1 Comparison between iterative and direct methods by means of computational and

storage costs. [35][36]

Experimental Studies on FT-GMRES Page 30 of 226

5.2 Krylov subspace methods [5][16][37][38][39]

5.2.1 Introduction

Iterative methods which should solve the equation system Ax = b are mainly used when direct

methods are not efficient enough or only approximate solutions are needed. The most common

used method for direct methods is the Gaussian LU -factorization [6] which is mainly used for non-

sparse matrices, that’s why direct methods are applied for dense matrices. The LU -factorization

decomposes matrix A with A ≈ LU to a lower (L) and upper triangular matrix (U).

In contrast iterative methods are mainly used if equation systems (Ax = b) with sparse matrices

have to be solved. Iterative methods for solving the equation system Ax = b are based on Krylov

methods which have the aim to find in each step a better approximation for the solution vector x

than in the previous step. The aim is to find after a finite number of steps a good solution which

should satisfy a given accuracy. This solution x computed with iterative and Krylov methods should

be as close as possible to the real solution x?, the accuracy in comparison to direct methods can

be arbitrary chosen depending on some input parameters like the number of iterations. This fact

can be an advantage but also a disadvantage in comparison to direct methods. It is an advantage

because the precision of the solution depends on the number of iterations and with a higher number

of iterations a better solution can be found. In contrast if the solution cannot be improved anymore

and the accuracy stagnates the chosen iterative method does not terminate. It also takes some

effort to find some good parameters which solves the equation system Ax = b efficiently.

These Krylov methods can be defined on different constraints, one of the most popular con-

straint is the computed residuum (||r||2 = ||Ax− b||2) or the property that it has to be orthogonal to

each other residuum such that rTj ri = 0 with j 6= i (, orthogonality means that the product of the

current residuum rj and a different chosen ri is zero) like in the case of the Conjugate Gradient

(CG) method. These constraints are important to define the properties of the affine space. The

affine space is nothing else as a projection from one Krylov subspace to the next computed one. It

defines how to approximate from a given solution x to a better solution from one iteration to the

next iteration which could have an impact on the computation speed and robustness of the used

iterative method. One way how to define Krylov methods and the according affine space is shown

in the next section 5.2.2 with the Jacobi method. Because of the slow computation speed a Krylov

method can be speeded up with preconditioners.

Most important Krylov subspace methods:

• In the Conjugate Gradient method (CG, see section 5.2.9) all different chosen residuals rj and

ri are orthogonal such that the product of rTj ri is zero with j 6= i. This method is derived from

the Steepest Descent method (SD) but it is much more faster through searching a direction

vector to minimize the residuum. The CG method is preferable for positive definite matrices (,

it means that for any chosen vector x not equal to zero the constraint of xTAx > 0 is satisfied).

• In the Generalized Minimal Residual method (GMRES, see section 5.2.10), the norm (||.||2)

of the residual r = Ax − b should be minimized. The GMRES solver is really robust because

for each iteration a better solution for vector x can be found. This method can be applied

to arbitrary matrices. GMRES is quite popular to use like the CG method but it is a stateful

solver which means that this solver needs more memory storage to solve the problem Ax = b.

Experimental Studies on FT-GMRES Page 31 of 226

5.2.2 The Jacobi method [6][40]

In this section the Jacobi method is introduced which helps to define a Krylov subspace method.

This is the easiest way to define a Krylov method so there can be also other ways to define Krylov

subspace methods on way is just by the Jacobi method.

So let b the vector of the ride hand side from a given linear equation system Ax = b with a

square matrix A ∈ Rn×n and size n then this equation system Ax = b is a short form of:

A =


a11 a12 . . . a1n
a21 a22 . . . a2n
...

... . . .
...

an1 an2 . . . ann

 , x =


x1
x2
...

xn

 , b =


b1
b2
...

bn

 (5)

, where the vector x should be the desired solution at the end of the computation. The matrix

A just stores all elements of the equation system which can be a sparse as well non-sparse matrix

and with the given right hand side b.

In the Jacobi method the matrix A is decomposed in a diagonal matrix D and the remainder of

A with R. The computation speed of the Jacobi method mainly depends on the eigenvalues λ of

matrix A with Ax = λx such that (A − Iλ)x = 0 for any chosen vector x then (A − Iλ) = 0 which

must be solved for λ and with I as the according identity matrix and size of n. The Jacobi method

like other Krylov methods converges really fast to the solution of x if the spectral radius ρ is lower

than 1 with ρ(D−1R) < 1 (or if ρ(A) < 1) where in the best case it should be almost zero.

The spectral radius ρ [6] of a matrix A is defined through ρ(A) = max
1≤k≤m

|λk(A)| where the largest

eigenvalue λ of ρ(A) for a matrix A is computed from the origin of all eigenvalues with m as the

number of independent eigenvalues. In practice the norm ||.||2 is used to compute the spectral

radius of a matrix A with ρ(A) = ||A||2 [6]. Let matrix A be decomposed with:

A = D +R,D =


a11 0 · · · 0

0 a22 · · · 0
...

...
. . .

...

0 0 . . . ann

 , R =


0 a12 . . . a1n
a21 0 . . . a2n
...

...
. . .

...

an1 an2 . . . 0

 . (6)

So from Ax = b it is obtained (D + R)x = b. In the Jacobi process a fix point method is applied

where a solution is found with xj+1 = f(xj) until xj+1 ≈ xj . This formula can be rewritten to

x = D−1(b−Rx). It follows that xj = D−1(b−Rxj) to solve the system Ax = b. A better solution of

xj+1 can be now obtained with applying the Jacobi method respective fix point iteration:

xj+1 = f(xj) = D−1(b−Rxj) (7)

, with xj which is the approximation in the j-th iteration of x where xj+1 is the next approximation

for the final solution vector x if j goes to infinity (j → ∞). In general the computation can be

stopped after a certain number of iterations if the desired accuracy of the solution vector x is

reached like for example the residual (||r||2) is below a certain value (ε) such that ||r||2||b||2 ≤ ε.

Experimental Studies on FT-GMRES Page 32 of 226

5.2.3 From Jacobi method to Krylov subspace methods [38]

The easiest way to introduce Krylov methods is to use the Jacobi method as introduced before. This

method is the easiest and simplest method but has only a low convergence rate µ. This rate µ can

be computed with limj→∞
|xj+1−x∗|
|xj−x∗|q = µ [41] which depends on the used value of q (= 1, 2, 3, . . .)

and x∗ as the exact solution where xj is the current solution in step j. If q is set to 1 and the value

of µ is between 0 and 1 then this method converges linearly for quadratic convergence q is 2.

The linear equation system Ax = b with the matrix A can be rewritten which can be transformed

to A = D + (A−D) where D is a diagonal matrix, then it leads to the equation system of:

((D + (A−D))x = b ←→ Dx = (D −A)x+ b. (8)

By applying the fixed point method like before this also leads to the Jacobi method:

xj+1 = B̂xj + b̂

, with B̂ = I −D−1A and b̂ = D−1b.

Then the approximate solution xj should converge to the real solution x∗ with:

xj → x∗ if j →∞
, where x∗ = A−1b is the exact solution of the used problem by solving the problem directly. Then

the defect vector dj can be defined as:
dj = xj − x∗. (9)

This vector dj gives the distance from the exact solution x∗ to best solution xj found so far. Because

of the fact that the exact solution x∗ is not known the defect vector dj cannot be computed in real

this can be often the case. Therefore to check for convergence the residuum rj can be used instead:

rj = b−Axj (10)

, it follows that:

rj = −A(xj − x∗) = −Adj (11)

, because x∗ solves Ax = b with x = x∗. The residuum rj is just used to indicate how far away

the vector xj is to satisfy Ax∗ = b. Both the residuum rj and the defect vector dj can be used as

an error correction method by iteratively applying this method the residuum would be minimized

from one iteration j to the next iteration j + 1. This is the main goal of iterative linear solvers.

From the definition of the residuum rj and by assuming that D = I with B = I −A it follows:

rj = Bxj + b− xj = xj+1 − xj , with rj = b−Axj .
Such that a new solution of x can be computed with xj+1:

xj+1 = xj + rj . (12)

By multiplying this formula with matrix −A a recursion is obtained in the case of the residuum rj+1

and rj with using the fact that rj+1 − b = −Axj+1 and rj − b = −Axj it follows:

rj+1 = rj −Arj = Brj . (13)

This recursion defines different Krylov subspaces with the help of the Jacobi method. These sub-

spaces are always spanned by computing the next residuum rj+1 from the current residuum rj .

Experimental Studies on FT-GMRES Page 33 of 226

5.2.4 From recursion of the residuum (rj = Axj − b) to Krylov subspace methods [38]

So with computing rj and applying the recursion mentioned before and with also doing some

inductions it follows that:

rj = pj(A)r0 ∈ span
{
r0, Ar0, . . . , A

jr0
}

(14)

, with pj(ξ) = (1 − ξ)j which is a polynomial of exact degree j. From the definition of computing

the residuum and by summing up the partial sums of all the previous computed residuals the

approximate solution xj can be computed:

xj = x0 + r0 + · · ·+ rj−1 = x0 + qj−1(A)r0 (15)

, with the polynomial qj−1 and the degree of j − 1. It follows that xj lies in the affine space of

x0 +
{
r0, Ar0, . . . , A

j−1r0
}

. This affine space of xj can be computed by always shifting the subspace

of rj−1 from one iteration to the next iteration. It takes j + 1 matrix vector operations for qj−1
and pj(A)r0 because of the fact that the span over all subspaces

{
r0, Ar0, . . . , A

j−1r0
}

has to be

computed. So the Krylov subspace method can be defined through the definition of xj or rj both

possibilities will lead to a recursion to solve the linear equation system Ax = b where a termination

criterion must be defined.

In general the most expensive computation is the (sparse) matrix vector product y = Ax for

each iteration j, this is the most expensive task of all iterative methods but if matrix A to solve

Ax = b is sparse this task can be done really efficient. The speed up of Krylov subspace methods

comes mainly from the fact that for iterative methods only matrices with a lot of zeros are used

where only a sparse matrix vector operation should be applied for iterative methods.

5.2.5 Definition of the Krylov subspace [38]

From a nonsingular matrix A ∈ Cn×n with y 6= o ∈ Cn and size of n, the m-th Krylov (sub)space

Km(A, y) generated by A from y is:

Km = Km(A, y) = span(y,Ay, . . . , Am−1, y). (16)

It is obvious that K1 ⊆ K2 ⊆ K3 . . .⊆ Km and for each further iteration the dimension always

increases by exactly one for each new computation step. One simple question is just when does

the equal sign holds for xm ∈ x0 +Km(A, r0). This is a termination criterion for iterative methods.

Let x? be the solution of Ax = b and with x0 as any initial starting vector of it and r0 = b− Ax0
as the corresponding initial residual, so x? is computed with:

x? ∈ x0 +Kv(A, r0) (17)

, after a finite number of steps and Kv(A, y) as the smallest A-invariant subspace that contains y.

Kv(A, y) has still the property that this subspace is in the affine space of Km with the attribute of

K1 ⊆ K2 ⊆ K3 ⊆ Kv . . .⊆ Km. v is also called the grade of matrix A which gives the smallest

A− invariant subspace of Kv(A, y) that contains y where all subspaces are independent. Indepen-

dent means that there is nothing that equals two different Krylov subspaces.

If the vectors r0, Ar0, . . . , Am−1r0 are spanning the Krylov subspace Km with m independent vec-

tors then a dimension of dim[Km(A, r0)] = m can be computed. Furthermore if there is an

Experimental Studies on FT-GMRES Page 34 of 226

Amr0 ∈ Km(A, r0) for any index j which equals two Krylov subspaces then following equation

can be obtained:
Km+j(A, r0) = Km(A, r0). (18)

This is indeed the case when the residuum rm is zero for exact precision and two Krylov subspaces

are not independent anymore after index m then this iterative method terminates. The value of m

is just the number of iterations when to stop this computing process.

Then it follows from the linear combination of:

0 = c0r0 + c1Ar0 + · · ·+ cm−1A
m−1r0 + cmA

mr0 (19)

, and with the fact that at least the variables cm and c0 are unequal to zero (cm 6= 0 and c0 6= 0)

such that the linear combination is independent like the vectors r0, Ar0, . . . , Am−1r0. If this is not

the case no Krylov subspace can be found. If r0 6= 0 and c0 6= 0 then it is possible to compute the

left side from this linear combination:

A−1r0 =
−1

c0

m∑
j=0

cjA
j−1r0 ∈ Km(A, r0). (20)

The smallest index m with:

m = dim[Km(A, r0)] = dim[Km+1(A, r0)] (21)

is called the grade of matrix A with respect to r0 which is the smallest number of iterations when

to stop this recursion or iterative process because no further independent Krylov subspace can be

found.

Mainly the idea of iterative methods is to generate a sequence such that xm = x? with xm ∈
x0 +Km(A, r0) of Ax = b where the residuum rm converges to zero. This true solution xm is found

if all residuals are linear independent and rm is zero. This condition of the residuum rm only holds

for exact arithmetic not for machine precision in computer systems, therefore there must be a

threshold value.

5.2.6 Definition of Krylov subspace methods [38]

An iterative method is called a Krylov subspace method for solving a linear equation system Ax = b

with starting from an arbitrary initial vector x0 and the related residuum r0 = b − Ax0 if after

m iterations exact m subspaces are created such that the desired solution xm is found with the

property that:

xm − x0 = qm−1(A)r0 ∈ Km(A, r0) (22)

, where xm − x0 is in the affine space of Km and with a polynomial qm−1 of order m− 1.

For the computed residual rm another statement can be done if rm exits:

rm = pm(A)r0 ∈ r0 +AKm(A, r0) ⊆ Km+1(A, r0). (23)

There is always a new affine space which can be computed at each iteration step for the residual

rm and pm as a polynomial of degree m which is related to the polynomial qm−1 with the exact

degree m− 1. qm is transformed to pm with the relation of:

pm(ξ) = 1− ξqm−1(ξ) (24)

Experimental Studies on FT-GMRES Page 35 of 226

, this relation also satisfies pm(0) = 1.

Sometimes the residual of the m-th iteration cannot be computed therefore the condition if it

exists is important. All residuals must be independent such that the product of rTj ri is zero for any

chosen index j not equal to i (j 6= i) and with the computed residuals rj and ri where both should

be independent perhaps this is not the case through rounding errors. If this problem occurs then

there also exists no Krylov subspace and also no approximate solution x for the problem Ax = b. It

is also worth to ask if an approximate solution can be found in a finite number of m steps within n

iterations as size of matrix A that’s why xm − x0 should be in the affine space of qm−1(A)r0.

5.2.7 Preconditioning of Krylov subspace solvers [33][38][42]

In most cases iterative solvers converge really slow because of the spectrum [6] if those eigenval-

ues of matrix A have too much distance between them. That’s why preconditioning is the way to

go because if the spectrum (see section 5.2.2) is lower than one the same used solver will be much

faster than a solver without preconditioning. There are also a lot of cases where preconditioning is

the only way to solve the linear equation system Ax = b. It is possible to decide between left, right

and split preconditioning and afterwards the equation system is solved for Âx = b̂.

Left Preconditioning:

CA(x) = Cb (25)

(Âx = b̂).

Right Preconditioning:

AC(C−1x) = b (26)

(Âx̂ = b̂).

Split Preconditioning:

CLACR(C−1R x) = CLb (27)

(Âx̂ = b̂).

There are different ways how preconditioning can be done, the first two are left and right

preconditioning whereas the last one is split preconditioning. Matrix C and the split preconditioner

with CLCR are the approximate inverse of matrix A, so matrix C should have the property that

CA = I in the case of left preconditioning. Sometimes C is replaced with matrix M and with the

property thatM ≈ Awhich means a matrixM is searched such that I ≈M−1Awith I as the identity

matrix. Then in the case of right preconditioning x = M−1u solves the problem in an efficient way

for AM−1u = b. From the above formulas matrix C is replaced with M−1 whereas matrix CL and

CR are replaced with M−1L ,M−1R if matrix M is used instead of matrix C. In preconditioned Krylov

subspace methods the system Âx̂ = b is solved first and afterwards the solution is back substituted.

The LU -factorization [6] for full matrices is some way of preconditioning because it scales all

values of around 1 and beneath and bounds the error of the solution vector x to a lower value. In

the case of the LU -factorization the first step is to factorize A with A = PLU (P . . . pivoting matrix,

L . . . lower matrix, U . . . upper matrix). Then solve Pz = b (PLUx = b) with z = PT b and afterwards

apply Ly = z and Ux = y.

For sparse matrices often the incomplete LU (ILU [6]) decomposition is applied where matrix

L (lower matrix) and U (upper matrix) of matrix A are chosen such that there are less fill ins in

Experimental Studies on FT-GMRES Page 36 of 226

comparison to the standard Gaussian factorization. The incomplete LU (ILU [6]) factorization does

similar the same like the standard LU -factorization but tries to avoid to fill matrix L and U with

unnecessary elements.

Often there is a parameter called threshold value or factorization error to determine when to

stop the factorization of matrix A. This parameter is used to determine if this new computed

value with a non-zero fill in should be deleted in relation to the other values. There are different

algorithms of how to apply incomplete decomposition for matrix A that’s why it is hard to determine

the number of operations for incomplete factorization generally.

5.2.8 Inexact Krylov methods [43][44][45]

In every Krylov method a matrix vector product is applied such that y = Ax. In contrast to exact

Krylov methods a different matrix A is considered to build all these subspaces for each iteration.

Matrix A is now replaced with A whereas the matrix E represents the difference between the exact

matrix A and the perturbed matrixA such thatA = A+E. Matrix E stores the perturbations mainly

because of rounding errors from the floating point representation and the input itself. Matrix E

will lead to a different Krylov subspace Km which is now disturbed:

Km = Km(A, y) = span(y,Ay, . . . ,Am−1, y). (28)

This Krylov subspace gives also a bound for the vector y because ||y||2 ≤ ||A||2||x||2. In general

there can be only computed upper bounds for exact and inexact Krylov methods. Inexact Krylov is

a special term which comes from numeric aspects with mainly focusing on the error which can be

caused from the used matrix A. Because of the fact that this matrix A is also error prone through

the representation of floating point values some further considerations about the Krylov subspace

have to be done.

Like in [43] its focus is mainly on the GMRES solver and the built Krylov subspace but this

paper also shows the possibility of how to extend this approach to other iterative methods. The

error matrix E has to be considered for further operations but it also allows to bound the maximum

allowable error which can be done with the GMRES solver. This given bound can be really useful

for finding a termination criterion for solving the equation system Ax = b.

In this model it is still allowed that matrix E changes from one iteration to the next iteration. In

[44] the author tries to determine the convergence behavior of the GMRES but as well for the CG

solver with the point of view for exact and inexact Krylov methods. This paper is more dedicated to

the convergence behavior of those two mentioned solvers. Something which is left is how flexible

methods (see section 9) will change the built inexact Krylov subspace in terms of the error bound

and the speed of solving the problem Ax = b.

Something more can be found in [45] about the perturbation theory of the GMRES solver, the

focus is still mainly on the perturbed Krylov subspace of matrix A.

Experimental Studies on FT-GMRES Page 37 of 226

5.2.9 The Conjugate Gradient (CG) and Steepest Descent (SD) method[16][37]

The Conjugate Gradient (CG) is mainly based on the Steepest Descent (SD) method both are dis-

cussed in this master work. The CG method is one of the most popular methods for positive definite

matrices (see formula 29) which converges really fast to the solution x for solving the problem of

Ax = b. The CG like the SD method can be only applied for symmetric positive definite matrices.

5.2.9.1 The Steepest Descent method (SD) [16][37]

For a given matrix A this matrix is positive definite if and only if the following equation holds:

xTAx > 0, for any chosen vector x except the zero vector. (29)

This leads to a quadratic form for a function f(x) which is similar to the expression of the residuum

but with respect to positive definiteness:

f(x) =
1

2
xTAx− bTx+ c, with c as any constant scalar and b as the right hand side. (30)

If the derive f(x)′ with respect to x of this function f(x) is computed it leads to following form:

f(x)′ =
1

2
ATx+

1

2
Ax− b. (31)

The function f(x) should be minimized but with the property that matrix A should be positive

definite as well symmetric (AT = A) then the function f(x) is solved for:

f(x)′ = Ax− b, note that
1

2
(AT +A)x = b is symmetric. (32)

This property comes from the fact that if a look at following relationship is done:

f(p) = f(x?) +
1

2
(p− x?)TA(p− x?). (33)

, with p as an arbitrary chosen point. The right term will be always positive if a different point p is

chosen from x? (p 6= x?) but with x? as the minimum of f(x) if matrix A is positive definite.

The SD method is started with an arbitrary starting vector x0 and after computing a series

of points x1, x2, x3, . . . the function f(x) should be minimized. In the case of the SD and CG

method the function f(x) should be minimized so it must be go in a specific direction of f(xj)
′ with

−f(xj)
′ = b − Axj , the so called gradient (direction) of this function f(x) which will always point

upwards but it must be go downwards to minimize the residuum (||r||2). In this method also com-

puting a step size α is needed to know how far to go to minimize the residuum (||r||2 = ||Ax− b||2).

Let dj be the error from the solution x? with dj = xj − x?. Then dj indicates how far xj is from the

real solution x? for each iteration j and with the according residual rj = b − Axj which indicates

the distance of Axj to the right hand side b. It is easy to see that rj = −Adj but also rj = f(xj)
′.

In the SD method a step size α is searched along the residuum r such that:

x1 = x0 + αr0 (34)

, for the initial residuum r0 and starting vector x0 with x1 as a new computed solution.

Experimental Studies on FT-GMRES Page 38 of 226

Let d
dαf(x1) be the directional derivative which minimizes the function f(x1) with respect to α such

that d
dαf(x1) is zero for the point x1. Then by the chain rule d

dαf(x1) = f ′(x1)T d
dαx1 = f ′(x1)T r0, it

follows that d
dαf(x1) must be orthogonal such that f ′(x1)T d

dαx1 = 0 for the related step size α. To

compute the step size α note that f ′(x1) = −r1, so let rT1 r0 = 0 then it follows that for α:

(b−Ax1)T r0 = 0

(b−A(x0 + αr0))T r0 = 0

(b−Ax0)T r0 − α(Ar0)T r0 = 0

(b−Ax0)T r0 = α(Ar0)T r0

rT0 r0 = α(Ar0)T r0

α =
rT0 r0
rT0 Ar0

. (35)

So by putting it all together the algorithm of the Steepest Descent (SD) method is as follows:

rj = b−Axj
αj =

rTj rj

rTj Arj

xj+1 = xi + αjrj . (36)

The next residuum is obtained by also multiplying the last equation with −A and −b:
rj+1 = rj + αjArj . (37)

Algorithm 1 The Steepest Descent (SD) algorithm for solving a symmetric positive definite system

(SPD) [32]:

Input: Matrix A, right hand side b with the initial starting vector x0 and ε as the accuracy for

solving Ax = b where m is the number of maximum allowable iterations.

Output: Approximate solution of vector xj for j > 0.

1: j = 0, r0 = b−Ax0, xj = x0 . Compute starting residuum r0.

2: ||rj ||22 = ||r0||22 = rTj rj
3: while ||rj ||2/||r0||2 > ε and j < m do . Check for convergence.

4: qj = Arj . Perform matrix vector product.

5: αj = ||rj ||22/(rTj qj) . Compute new step size αj .

6: xj+1 = xj + αjrj . Do the according step for current solution xj .

7: rj+1 = rj − αjqj . Compute a new residuum for xj .

8: ||rj+1||22 = rTj+1rj+1 . Compute a new normalized residuum for ||rj+1||22.

9: j = j + 1 . Compute next iteration index j.

10: end while

11: return xj

In algorithm 1 the SD method is shown which minimizes the residuum r = b−Ax for symmetric

positive definite matrices (SPD). In general the SD method converges really slow in contrast to the

CG method so the CG method is always preferable for solving symmetric positive matrices (SPD).

Experimental Studies on FT-GMRES Page 39 of 226

5.2.9.2 The Conjugate Gradient method (CG) [16][37]

In contrast to the SD method the CG algorithm computes some orthogonal search directions for

the vectors p0, p1, . . . , pm−1 furthermore for each search direction p also a step size α is computed

to minimize the residuum r = Ax − b. The following sequence should solve the problem Ax = b in

a finite number of steps with the iteration index j:

xj+1 = xj + αjpj . (38)

So let a set of vectors {p1, . . . , pj} be orthogonal with the respect to the positive symmetric matrix

A then such following constraint can be obtained:

pTj Api = 0, whenever j 6= i which means that vector pj and pi are orthogonal to A. (39)

There is a sequence of different xjs which converges to the desired solution x? as long as j is less

than m within at most m steps such that j → m. This sequence should be linear independent with

the respect to the search direction p, so following equation can be obtained by also considering α:

x? − x0 =

m−1∑
i=0

αipi. (40)

Equation 40 is based on 38 where a sequence is searched such that the residuum r is minimized,

at the end all computation steps are summarized to compute x? with the initial value x0. So if this

equation 40 is multiplied with pTj A from the left and by considering Ax? = b but also using the

constraint pTj Api = 0 whenever j 6= i because all search directions must be A-orthogonal it follows:

pTj A(x∗ − x0) = pTj (b−Ax0) = pTj r0. (41)

On the right side following equation can be obtained:

pTj A

m−1∑
i=0

α0p0 = αjp
T
j Apj .

Therefore:

pTj r0 = αjp
T
j Apj . (42)

It follows that:

αj =
pTj r0

pTj Apj
=

pTj rj

pTj Apj
(43)

, because of the obvious fact that pTj r0 = pTj rj .

Thus a search direction αj is found. Also let rj+1 be the next computed residuum:

rj+1 = b−Axj+1 = b−A(xj + αjpj) = rj − αjApj . (44)

Alternatively a new direction pj+1 is computed from the current pj with the following sequence

such that pj and pj+1 are linear independent (pjpj+1 = 0 ∀j) for all indexes j:

pj+1 = rj+1 + βjpj . (45)

Experimental Studies on FT-GMRES Page 40 of 226

The restriction of independence for pj and pj+1 also leads to the fact that the product of pTj pi is

zero for all indexes j unequal i (∀j 6= i). From the expression of rj+1 and pj+1 the step size βj can

be computed for the next orthogonal search direction pj+1, so it follows that:

βj = −
rTj+1Apj

pTj Apj
by equation 45 and pTj+1Apj = 0.

βj = −
rTj+1A(rj − rj+1)

αjApTj Apj
by equation 44.

βj = −
rTj+1(rj − rj+1)

rTj pj
by equation 43.

βj = +
rTj+1rj+1

rTj rj
with the help of rTj+1rj = 0. (46)

The last equation is obtained from the condition that all computed residuals must be indepen-

dent such that the product of rTj ri is zero for all indexes j unequal i (j 6= i) and for any chosen

residuum rj not equal ri (rj 6= ri). This orthogonality property is also obtained by the SD method.

In algorithm 2 the CG method is shown which is one of the most popular algorithms to solve prob-

lems of Ax = b for symmetric positive definite (SPD) matrices. It has the input of matrix A, the

right hand side b and the number of maximum allowable iterations m to converge to the solution x

with accuracy ε.

Algorithm 2 The Conjugate Gradient (CG) algorithm for solving a symmetric positive definite

system (SPD) [32]:

Input: Matrix A, right hand side b with the initial starting vector x0 and ε as the accuracy for

solving Ax = b where m is the number of maximum allowable iterations.

Output: Approximate solution of vector xj for j > 0.

1: j = 0, r0 = b−Ax0, xj = x0 . Compute starting residuum r0.

2: p0 = r0, ||rj ||22 = ||r0||22 = rT0 r0
3: while ||rj ||2 > ε× ||r0||2 and j < m do . Check for convergence.

4: qj = Arj . Perform matrix vector product.

5: αj = ||rj ||22/(pTj qj) . Compute new step size αj .

6: xj+1 = xj + αjrj . Do the according step for current solution xj .

7: rj+1 = rj − αjqj . Compute a new residuum for rj+1.

8: β = ||rj+1||22/||rj ||22 . Compute a new step size β for search direction pj .

9: pj+1 = rj+1 + βpj . New search direction for pj+1.

10: j = j + 1 . Compute next iteration index j.

11: end while

12: return xj

One main advantage of the CG method is that there is always a constant work for each iteration

step because there is only a sparse matrix vector product (line 4) and some vector operations (line

5 - 9). The number of operations in the main loop of the CG solver can be obtained in section 6.1.4.

Experimental Studies on FT-GMRES Page 41 of 226

5.2.10 GMRES and orthogonalizing with classical Gram Schmidt (GS) and modified Gram

Schmidt (MGS) methods [5][39][46][47]

5.2.10.1 Introduction and the orthogonalization process of the GMRES solver

The most important part of the GMRES solver is the Arnoldi process. This method mainly tries to

solve the problem Ax = b through orthogonalization of the residuum r for matrix A and the right

hand side b. This process also builds a Krylov subspace withKm = Km(A, r) = [r,Ar,A2r, . . . , Am−1r]

like in any other iterative method. The GMRES solver should minimize the problem of 1
2 ||b−Axm||22

for vector xm ∈ x0 + Km, xm is the computed solution after m iterations where x0 is the initial so-

lution for the Krylov subspace (matrix) Km. In the Arnoldi process a basis matrix Qm is computed

with the vectors of q1, q2, . . . , qm such that Qm = [q1, q2, . . . , qm] where the main property of each

vector qj should be orthogonality to each other vector qi such that the product of qTj qi is zero for

all indexes j unequal to i (∀j 6= i).

Matrix Qm stores all computed basis vectors q1, q2, . . . , qm, this matrix Qm has size n×m where

n is the length of vector x and with m for the number of iterations. This orthogonalization process

also leads to the so called Hessenberg matrix Hm with Hm = Q−1m AQm which comes mainly from

the similarity transformation of QmHm = AQm. The so called Hessenberg matrix Hm is computed

with the orthogonal matrix Qm which obtains those eigenvalues λ of matrix A (Ax = λx). Orthog-

onal matrices have the property that the product of QQT (QTQ) is I with I as the identity matrix

and size n. It leads to the fact that matrix A multiplied from the left and right (Q−1AQ) with the

orthogonal matrix Q−1 and Q will not be scaled but only the values of matrix A are projected such

that the main properties of A are unchanged. In this iterative process the size of Hm increases

for each new iteration of m. This iterative process of the GMRES solver can be now obtained with

AQm = QmHm and using a basis matrix Qm, now take j < m then the equation of AQm = QmHm

with the form:

AQm = Qm ×



h1,1 h1,2 h1,3 · · · h1,j · · · h1,m
h2,1 h2,2 h2,3 · · · h2,j · · · h2,m

0 h3,2 h3,3 · · · h3,j · · · h3,m
... 0 h4,3

. . .
...

0
. . . hj−1,j−2

...

0 hj,j−1 hj,j
...

. . .
. . . 0 hj+1,j

...
...

. . .
. . . 0

. . .
. . .

...

0 · · · 0 hm,m−1 hm,m



(47)

, can be reformulated. Afterwards consider only parts of the equation namely Qj and Qj+1 then

following equation is obtained with AQj = Qj+1Ĥj and a different matrix Ĥj such that:

Ĥj =



h1,1 h1,2 h1,3 · · · h1,j
h2,1 h2,2 h2,3 · · · h2,j

0 h3,2 h3,3 · · · h3,j

0 h4,3
. . .

...

0
. . . hj−1,j−2

...
... hj,j−1 hj,j
0 0 hj+1,j


(48)

Experimental Studies on FT-GMRES Page 42 of 226

, with matrix A ∈ Cn×n, Qj ∈ Cn×j , Qj+1 ∈ Cn×(j+1) and the Hessenberg matrix Ĥj ∈ C(j+1)×j such

that both sides of the equation system AQj = Qj+1Ĥj hold a matrix with size n × j. Matrix C can

also have real and complex values. If both sides from the previous equation system (AQj = Qj+1Ĥj

) are compared then following equation can be obtained for each single basis vector q:

Aqj = h1,jq1 + h2,jq2 + · · ·+ hj,jqj + hj+1,jqj+1. (49)

An iterative process is revealed for computing the next basis vector qj+1 from the previous vectors:

qj+1 =
Aqj −

∑j
i=0 hi,jqi

hj+1,j
. (50)

This recursive process for the unitary (orthogonal) matrix Qj (QjQHj = QHj Qj = I) which computes

the orthogonal basis vectors q1, . . . , qj is formally known as the Arnoldi process. Unitary matrices

have complex values whereas orthogonal matrices have only real values such that QH = Q−1, QH

is the conjugate transpose for matrix Q (unitary matrix).

In the first step of this process the iterative method is started from the normalized vector q1 such

that ||q1||2 = 1 for an arbitrary matrix A, it follows for the next computed basis vector q2 that:

q2 =
Aq1 − h11q1

h21
.

Hence the most compute intensive part of the GMRES algorithm is the sparse matrix vector

product of Aqi which can be done by an efficient subroutine. Now because of the fact that the

product of q1 and q2 should be orthogonal such that qT1 q2 = 0 it holds that:

0 = qT1 Aq1 − h11qT1 q1.

So by taking the advantage of the normalization for vector q1 (qT1 q1 = 1) it follows that:

qT1 Aq1 = h11q
T
1 q1

h11 =
qT1 Aq1
qT1 q1

=
qT1 Aq1

1
.

Finally let the vector v = Aq1 − h11q1 and compute h21 = ||v||2 for normalization of the next basis

vector q2 then following equation can be obtained:

q2 =
v

h21
.

This will lead to the so called Arnoldi process or formally known Gram Schmidt process for finding

m independent basis vectors stored in matrix Qm:

qj =
Aqj −

∑j−1
i=1 hi,jqi

||vj,j ||2
(51)

, this process is presented in algorithm 3 which is also called classical Gram Schmidt method

[48]. The aim of this process is to find m independent basis vectors for the matrix A in m iterations

which are stored in the matrix Qm but also the values of the Hessenberg matrix Ĥ must be saved

in Ĥm. The Classical Gram Schmidt (GS) and Modifiied Gram Schmidt (MGS) process are similar

Experimental Studies on FT-GMRES Page 43 of 226

which is shown in algorithm 3 and 4 because only a single line has changed (line 5). The classical

GS and MGS methods are mathematically the same, the main contrast is that Aqj is replaced with

vj in the algorithm of MGS. This operation (Aqj) is only done once which leads to higher stability

but also to a lower number of operations. In the MGS algorithm orthogonalization is done against

the previous computed basis vectors which also leads to a higher stability.

Algorithm 3 Classical GS algorithm [47][48]:

1: Let x0 ∈ Rn
2: Choose r0 = b−Ax0, v1 = r0

||r0||
3: for j = 1, . . . ,m do

4: vj = Aqj
5: for i = 1, . . . , j do

6: hi,j = (qi)
T (Aqj)

7: vj = vj − hi,jvi
8: end for

9: hj+1,j = ||vj ||
10: qj+1 = vj/||hj+1,j ||
11: end for

Algorithm 4 Modified GS algorithm [47][48]:

1: Let x0 ∈ Rn
2: Choose r0 = b−Ax0, v1 = r0

||r0||
3: for j = 1, . . . ,m do

4: vj = Aqj
5: for i = 1, . . . , j do

6: hi,j = (qi)
T (vj)

7: vj = vj − hi,jvi
8: end for

9: hj+1,j = ||vj ||
10: qj+1 = vj/||hj+1,j ||
11: end for

Since stability takes a big concern the invariant ||1− qTj qj ||2 ≤ εOrtho [48] with εOrtho as a threshold

value can be used to give a good prospect about the orthogonality but as well stability of the vector

qj which can be computed for each iteration j. This property of orthogonality for the GMRES solver

might be crucial for solving Ax = b because it mainly affects the stability of solving Ax = b.

5.2.10.2 Arnoldi Iteration as Projection onto Krylov subspaces [39]:

An alternative for introducing the Arnoldi process is to start with the Krylov matrix Km:

Km = [r,Ar,A2r, . . . , Am−1r]. (52)

Then by multiplying from the left side with matrix A following Krylov subspace is obtained:

AKm = [Ar,A2r,A3r, . . . , Amr]. (53)

For both equations before the last equation can be rewritten to:

AKm = Km[e2, e3, . . . , em,−c] (54)

, where
c = −K−1m Amr. (55)

Then by assuming Km is invertible it follows equivalently:

AKm = KmCm (56)

, with the upper Hessenberg matrix Cm:

Cm = [e2, e3, . . . , em,−c]. (57)

It can be shown that matrix A and Cm are similar through the formula K−1m AKm = Cm. The main

problem is that matrix Km is usually ill-conditioned because of the product Amr, it converges to

Experimental Studies on FT-GMRES Page 44 of 226

the most dominating eigenvalue of A, ill-conditioned problems can be only solved hard. It also

means that inverting matrix Km is not a good approach and should be avoided as much as possible

because small perturbations would make solving the problem AKm = KmCm inaccurate. Let Km

be decomposed with matrix Qm and Rm such that Km = QmRm also called QR-factorization [6]

with an orthogonal matrix Qm and an upper tridiagonal matrix Rm it follows for matrix Km:

Km = QmRm

K−1m AKm = Cm

R−1m Q−1m AQmRm = Cm

Q−1m AQm = RmCmR
−1
m

Q−1m AQm = Hm. (58)

This equation 58 is also a similarity transformation from matrix A to Hm with Q−1m AQm = Hm. It

should be pointed out that this is not a good approach because it is computationally intensive and

unstable. Computing the vector c involves solving the (ill-conditioned) linear system Kmc = Amb,

it would also need to find the inverse of Rm. However the formula which is observed above can be

interpreted as an orthogonal projection of A on Km or Hm because:

Q−1m AQm = Hm. (59)

, whereas matrix Qm represents the basis vectors of all columns about the Krylov matrix Km.

In the GMRES method the residuum rm should be minimized after some finite number of steps

where the real solution x? is found with x? = A−1b, so the GRMES should minimize ||rm||2 with:

||rm||2 = ||b−Axm||2 → min. (60)

Now start with the Krylov matrix Km, thus the column space of Km is AKm.

The desired vector xm ∈ Km can be found with:

xm = x0 +Kmc, to solve Ax = b. (61)

Then the problem becomes:
||rm||2 = ||b−A(x0 +Kmc)||2 → min. (62)

Instead to use the Krylov subspace Km the basis vectors of Qm are used instead with the factoriza-

tion of Km = QmRm (y is still the solution of equation 55) then the same problem is solved with:

xm = x0 +Qmy. (63)

, afterwards a solution xm is computed.

Let xm = x0 +Qmy with y ∈ Rm and e1 = (1, 0, . . . , 0)T ∈ Rm+1 it follows for the residuum rm:

rm = ||b−Ax||2 = ||b−A(x0 +Qmy)||2 = ||r0 −AQmy||2
= ||||r0||2v1 −AQmy||2 = ||||r0||2v1 −Qm+1Ĥmy||2

= ||Qm+1(||r0||2e1 − Ĥmy))||2 = ||||r0||2e1 − Ĥmy||2. (64)

The last steps follows from Qm+1Q
T
m+1 = I and with the help of v1 = Qm+1e1. Now the problem

rm = ||b−Ax||2 → min can be rewritten to rm = ||βe1 − Ĥmy||2 → min with β = ||r0||2.

Experimental Studies on FT-GMRES Page 45 of 226

5.2.10.3 Applying Givens rotation in GMRES [5][47]:

Because the Hessenberg matrix Ĥm is not an upper triangular matrix like in equation 66, it makes

it hard to solve the problem Ĥmym = βe1 for vector ym therefore another projection method is used

which is called the Givens rotation such that all values below the main diagonal are set to zero.

This method reduces the number of non-zero values for the matrix Ĥm with the appearance of:

Ĥm =



∗ ∗ ∗ . . . ∗
∗ ∗ ∗ . . . ∗
∗ . . .

. . .
...

∗ . . . ∗
0 ∗ ∗


(65)

(Values marked with "*" are non-zero values.)

, which can be more efficiently solved afterwards for the right hand side βe1 and vector ym but also
with a lower number of operations. The Givens rotation reduces the Hessenberg matrix Ĥm with a

rotation plane G at each iteration of m. It follows that there are only m Givens rotations needed at

all for m iterations whereas matrix R̂m and Rm are in general an upper triangular matrix. Then the

new computed Hessenberg matrix Ĥm after applying m Givens rotation has the appearance of:

Gm+1,m . . . G32G21Ĥm =



∗ ∗ ∗ . . . ∗
∗ ∗ . . . ∗

. . .
. . .

...
. . . ∗

0 ∗


= R̂m =

[
Rm
0

]
(66)

, with matrices G21 . . . G32 . . . Gm+1,m ∈ R(m+1)×(m+1) as the according rotate plane for the Givens

rotation but also only the last matrix column of Ĥm+1 has to be updated from the last iteration

because all other non-zero values are already set to zero such that:

Ĥm+1 =


Ĥm

∗
...
...

∗
0 0 ∗


. (67)

In the end there should be m Givens rotations done for m iterations for reducing the number of

non-zero elements in matrix Ĥm, now problems for matrix Ĥm can be solved more efficiently.

With applying Givens rotations and the substituting of βe1 = ẑm it follows for the residuum:

||r||2 = ||b−Ax||2 = ||βe1 − Ĥmy||2 = ||ẑm − R̂my||2 (68)

, with

ẑm = Gm+1,m

[
ẑm−1

0

]
. (69)

The vector ẑm can be presented like: ẑm =

[
ẑm
σm

]
whereas σm is some error term.

Experimental Studies on FT-GMRES Page 46 of 226

From this notation the residuum can be expressed as:

||rm||2 = ||b−Axm||2 = ||ẑm −Rmym||22 = ||zm −Rmym||22 + ||σm||22 = ||σm||22. (70)

Using ||σm||22 can be a good indicator for the residuum (||rm||2 = ||Axm − b||2) and will save a

lot of floating point operations because computing the residuum rm always needs a sparse ma-

trix operation (Ax) and a subtraction between two vectors. In this work ||σm||22 is also called the

approximation error and can be also seen as a pseudo residuum because ||rm||2 is not computed

directly.

During applying the Givens rotation a matrix G must be computed to attain an upper triangular

matrix, this matrix G must be orthogonal and unitary which means that the determinate of G must

be 1 such that det(G) = 1. From the fact that the determinate must be 1 it follows that matrix G

is just a rotation plane and will not scale the values of the Hessenberg matrix Ĥ in any direction.

The matrix Gj =

[
cj sj
−sj cj

]
is only used to reduce the number of values for non-zero elements

of the Hessenberg matrix Ĥj for each iteration j. Now the matrix Gj can be computed with the

equations of det(Gj) = 1 = c2j + s2j and 0 = ĥi+1,j = −sihi,j + cihi+1,j . The last condition follows

from the fact that ĥi+1,j should be set to zero after applying matrix Gj for the current computed

Hessenberg matrix Ĥj . Then these two equations are solved with cj = hi,j/η and sj = hi+1,j/η

with using η =
√
h2i,j + h2i+1,j such that a matrix Gj is obtained which is applied for the next matrix

Ĥj+1.

Algorithm 5 Givens algorithm for attaining an upper Hessenberg matrix [39][46][47]:

Input: Hessenberg matrix Ĥj with size j.

1: Apply old Givens rotation to j-th column of Ĥj and vector c, s with size of m.

2: for i = 1, 2, .., (j − 1) do

3:

[
ˆhi,j
ˆhi+1,j

]
=

[
cj sj
−sj cj

][
hi,j
hi+1,j

]
4: end for

5: . Compute new Givens rotation for elimination of Ĥj(j + 1, j).

6: τ = |hj,j |+ |hj+1,j |
7: ν = τ

√
(hj,j/τ)2 + (hj+1,j/τ)2)

8: cj = hj,j/ν

9: sj = hj+1,j/ν

10: . Apply Givens rotation to Ĥj .

11: hj,j = ν

12: hj+1,j = 0

13: . Apply Givens rotation to right hand side of zj .

14: zj+1 = −sjzj
15: zj = −cjzj
16: if ||zj+1||2/||b||2 ≤ ε then

17: Converged to the desired tolerance ε.

18: return

19: end if

Algorithm 5 shows the Givens rotation which is mostly taken from the book [47]. It makes

solving the equation system ||rm||2 = ||ẑm − R̂mym||2 ≈ ||Ax− b||2 really efficient.

Experimental Studies on FT-GMRES Page 47 of 226

5.2.10.4 The Generalized Minimal Residual (GMRES) algorithm [4][5][12]

The GMRES solver which is presented in algorithm 6 consists mainly of the orthogonalization

process (line 3 - 14), a sparse matrix vector product (line 4) and the optional rank revealing de-

composition with the Givens rotation (line 16) for each iteration j. The Givens rotation is shown

in algorithm 5. The most compute intensive parts of the GMRES solver (see section 6.1.4) are the

sparse matrix vector product and the orthogonalization process with the Gram Schmidt or Mod-

ified Gram Schmidt method shown in algorithm 3 and 4. Like in any other iterative method the

initialization is really important for the solution vector x because the used solver converges faster

if the initialization for vector x0 is near to the real solution x?. Using the GMRES solver has some

advantages but also some disadvantages, the most obvious problem is that because of storing the

Hessenberg matrix Ĥ for solving the equation system Ax = b this solver needs some additional

storage place for Ĥ in the main memory in contrast to the Conjugate Gradient (CG) method which

is only able to solve positive definite matrices (SPD). The GMRES solver is able to solve any kind of

problem for a sparse matrix A. This solver like any other solver can be extended to a flexible solver

shown in algorithm 11 which is just an application of iterative refinement explained in section 9.

Algorithm 6 GMRES without restarts [4][5][12]:

Input: Matrix A, right hand side b and initial starting vector x0 and m for the number of iterations.

Output: Approximate solution of vector xm for m > 0.

1: r0 = b−Ax0 Compute initial residuum vector.

2: β = ||r0||2, q1 = r0/β Compute first basis vector q1.

3: for j = 1, 2, ...until convergence and j < m do

4: vj+1 = Aqj Perform matrix vector product.

5: . Orthogonalize basis vector qj (line 6-10).

6: for i = 1, 2, ...j do

7: hi,j = qTi vj+1

8: vj+1 = vj+1 − hi,jqi
9: end for

10: hj+1,j = ||vj+1||2
11: if hj+1,j ≈ 0 then

12: Solution found xj−1.

13: return

14: end if

15: qj+1 = vj+1/hj+1,j New basis vector qj+1.

16: ... Apply Givens rotation to Ĥ(1:j,1:j)) (, optional do a rank revealing decomposition [49]).

17: yj = argminy||Ĥ(i : j + 1, 1 : j)y − βe1||2 Solve least square problem.

18: xj = x0 + [q1, q2, . . . , qj]yj Compute solution xj .

19: end for

The GMRES solver can be restarted it is just possible to reuse the old solution xm from the previous

computation and to do the whole process again. It gives the possibility to restart the process from

a better solution xm computed so far. This Krylov subspace method does no contrast where to start

for the solution vector x0 which leads to the fact that the storage place for building the Hessenberg

matrix is less restrictive. For speeding up this method in algorithm 6 of the standard GMRES

solver line vj+1 = Aqj has to be replaced for preconditioning with vj+1 = L(\U\(Aqj)) if ILU -

preconditioning is applied [6] but also the residuum r has to be replaced with r = U\(L\(b−Ax)).

Experimental Studies on FT-GMRES Page 48 of 226

5.3 The condition number (κ(A)2) of a matrix A [50]
The condition number (κ(A)2) of a matrix A is the relation between the input and output error of a

matrix A. High condition numbers indicate that the input error is amplified because of the entries

of matrix A and the related eigenvalues λ. If matrix A has a high condition number then matrix

A will amplify small disturbances like during the matrix vector product (Ax) and will be sensitive

to small disturbances. In general the condition number (κ(A)2) of a matrix A is computed with its

inverse A−1 such that AA−1 = I where I is the identity matrix and with the according norm (||.||2):

κ(A)2 = ‖A‖2‖A−1‖2 [50]. (71)

From this equation 72, it follows that this property κ(A)2 of a matrix A with the used norm ||.||2
is determined if the lowest (λ1(A)) and greatest (λn(A)) eigenvalue is known and can be computed

with:

κ(A)2 =
||λn(A)||2
||λ1(A)||2

[50] (72)

, like in the case of a diagonal matrix (see formula 102 and formula 103). The condition number

κ(A)2 also depends on the used norm (||.||2) but if another norm is used the magnitude of the

computed condition number differs less against another computed condition number with another

norm because all norms have nearly the same explanatory power. If a matrix A has condition

number 1 then this matrix A is well conditioned and the error is not amplified. The condition

number of a matrix A is also used to determine how fast a solver could converge to the solution

vector x or if the problem to solve (Ax = b) is poor or well conditioned, a well conditioned problem

converges always faster than an ill conditioned problem. Well conditioned problems always have a

condition number 1 whereas ill conditioned problems have a greater condition number.

5.4 Problem description of exa scale computing [1][2][51][52][53][54]
In recent years the number of components and transistors has increased in computer systems

through massive scaling the number of cores of a CPU (Central Processor Unit). The main reason

to speed up programs with increasing parallelism is that at some specific point it is not possible

to rise the frequency (f) and voltage (U) because of the fast increase of energy consumption (P).

Another point is that the IPC (Instructions Per Cycle) of a single core has not increased in the last

years. IPC is mainly the number of instructions which can be done during each compute cycle of

a single compute core of a CPU. So the most speed up was achieved in the past with scaling the

number of cores and transistors of a CPU. This energy requirement P for each computing core is

proportional to the square of the voltage (power consumption: P ≈ CU2f [55] with C the capacity

as the ability to store electrical charge, U the voltage and f as the frequency). Therefore the limit

of the maximum allowable usage of energy (P) restricts the frequency (f) and as well the voltage

(U) because of the possibility of damaging the used components. This problem is mainly known as

the power wall problem [52][53] which is illustrated in figure 1. It is impossible to pass over this

point and to increase the power consumption more because of damaging the used components of

a CPU.

For computer systems it is impossible to increase the number of components beyond any limit

without changing the reliable mode. A system which runs in higher reliability will also need a

higher power consumption. Lowering the reliable mode means changing to an unreliable mode

where more components are allowed to fail. A higher power consumption (P) than recommended

will lead to a faster aging of the used components and will perhaps also destroy them. The power

wall problem [52][53] mainly limits the density of waste heat per surface of each CPU core because

of cooling restrictions from the used components.

Experimental Studies on FT-GMRES Page 49 of 226

Figure 1 Illustration of the power wall problem [52][53] based on Intel slides. [56]

There are also other restrictions like the memory wall [57] besides the power wall [52] problem.

At some point of an algorithm the most limitation for speeding up the program comes from the

bandwidth limitation (e.g. bandwidth between cache and global memory, bandwidth between two

network cards, . . .). This problem is mainly important for scientific applications as well as for other

applications.

With increasing the level of parallelism through the number of cores and used components the

chance that some of those computations fail rise. This is mainly a problem on huge computer

clusters with a massive number of CPU cores beyond one million and especially more. Each single

transistor has a chance to fail and as more transistors are used the chance that a fault happens

rises. This probability may rise in the best case linearly with the number of the used components.

A description used to determine the reliability of a system is called Mean Time Between Failures

(MTBF). This fraction describes the average time after a failure to the next occurrence of a failure.

This value has more explanatory power than only taking the probability of all failures. For example

a modern hard disk has a MTBF of 300000 to 1200000 hours [54] but this time refers to aggregate

analysis of a large number of hard drives because it would take really too long to test only a single

unit. A modern DRAM (Dynamic Random Access Memory [58]) chip for the main memory has a

MTBF of about 14 to 142 years [51]. So mean MTBF refers to a large number of components rather

than to a single one and can be computed in arbitrary units. MTBF is also referred to the average

time between two failures if the error is correctable.

In the main memory of each computer system there is often used ECC (Error Correcting Code)

memory which consumes a lot of electricity power of about 12.5 % against non-ECC memory [2]

and leads to a performance lose of about 5 % up to 15 % [1][2]. ECC memory mainly detects and

corrects bit-flips if a failure occurs in the memory. Lowering the energy requirements means more

bit-flips will happen, these bit-flips can be corrected as well not corrected by the ECC memory. The

chance to detect and correct a bit-flip is mainly related to the voltage level (U) of the used memory

modules. Lowering the voltage (U) leads to a lower reliable mode of the used ECC memory.

Experimental Studies on FT-GMRES Page 50 of 226

Some applications show that only in special sections high reliability is needed where most of

the work can be done in unreliability. In numeric applications the result must be checked with

high reliability if the computation should be correct or not. This leads to a layered approach where

data can be still exchanged between reliable and unreliable sections (see section 5.5). At the end

of the computation the right result should be still achieved even with some faulty data during the

computation.

This is the point where self-stabilizing systems (see section 4.1) or selective reliability (see sec-

tion 6.2) play a big role just because it is not possible to detect and correct each fault of each

component if the reliable mode is decreased. The property of self-stabilization describes that a sys-

tem reaches a valid state or satisfies some specific rules in a finite number of steps no matter of the

initial state or the invalid states between the computation. Designing new algorithms would help

here to decrease these energy requirements with the property of self-stabilization such that it is

still possible to achieve the same results with some faults like in the case if everything is computed

with the same reliable mode. There are some nice side effects of self-stabilizing systems because

it is possible to decrease the energy requirements but as well to increase the level of parallelism.

There are also some other aspects of self-stabilizing systems which make designing new algorithms

very interesting. It is possible to relax some components as well as the used algorithm itself but

also the programming model. This relaxation must still satisfy specific constraints like the upper

bound of the computed error (e.g. difference between reliable and unreliable computations, result

of the computation in unreliable mode against the exact solution, . . .). The driving force using

self-stabilizing algorithms is just to increase the number of components as well as to decrease the

vulnerability but these algorithms also change the perspective to design new algorithms and how

to exploit more parallelism.

Self-stabilization is not only important in the context of High Performance Computing (HPC)

because there are also other applications where these kind of algorithms take place (e.g. sensory,

communication, . . .). In figure 2 the history of flops (floating point operations per second) is shown

of the fastest super computer per year taken from the source [59], to achieve further progress

of more flops new techniques must be explored like the property of self-stabilization or selective

reliability (see section 6.2) to overcome different problems about HPC.

1990 1995 2000 2005 2010 2015

Year

108

109

1010

1011

1012

1013

1014

Fl
o
p
s

p
e
r

S
e
co

n
d

Advance of Floating Point Operations

Figure 2 The history for change in flops (floating point operations per second) from 1990-2014

for the fastest super computer(s) per year. [59]

Experimental Studies on FT-GMRES Page 51 of 226

5.5 The statistical and sandbox reliability model [4][12]

There are two different models which are applied in fault tolerant iterative linear solvers, the sta-

tistical and the sandbox reliability model. Both methods differ in the number of computations and

operations which leads to different aspects but also to various advantages and disadvantages.

The statistical model [12]:

The statistical model is mainly based on some assumptions for faults and errors (see section 5.6).

It is common in this model to do different trials for solving the equation system Ax = b with an

existing iterative method in unreliability when bit-flips are allowed to happen and with isolating

the most obvious outliers. It also means if one of these assumptions is wrong no errors and faults

can be detected. Just for example in the statistical methods finding some outliers is based on the

predefined median. If those data and conditions for computing it are imprecise it is hard to ex-

clude some wrong data. Another problem is if a single outlier is the real solution, no solution can

be found because it is excluded. It also takes additional computations for each further execution

of the used solver to determine the most obvious solution.

The sandbox reliability model [4][12]:

In contrast to the statistical model, the sandbox reliability model is related to IT-security systems

where some parts of a computer program are isolated to run in a secured area from the rest of the

system. In this section the isolated part is allowed to do anything but it is not possible to harm the

host system anymore. Sand-boxing gives a layered approach where parts are isolated from the rest

of the system but with still the property to exchange information between these two sections just

for example from reliable to unreliable mode and vice versa. This model is not totally new but it

can be extended to iterative solvers. Most of the workload and computations in this model should

be done in unreliability. In figure 3 the sandbox reliability model in the context of (fault tolerant)

iterative linear solvers is shown.

reliable

unreliable Inner Solver
(do preconditioning)

 Outer Solver
(check for convergence)

Data exchange

Figure 3 The sandbox reliability model.

Some properties about the sandbox reliability model:

• In the sandbox reliability model for iterative methods there are two solvers one outer but as

well one inner solver.

• There are some numerical methods where only a few computations have to be done with high

reliability to ensure correctness of the final computed result.

• It leads to a layered approach where it is allowed that information is exchanged, if most of

the time is spend in the inner solver then the total costs can be reduced.

Experimental Studies on FT-GMRES Page 52 of 226

5.6 Classification of faults and failures [4][12][60]

There can be hard and soft faults during some computations of a program, it mainly depends on the

abstraction level, the classification can be found below in figure 4 which gives a general overview.

• Hard faults: "Cause program interruption and are outside the scope of what the executable

program can directly detect. These faults can result from hardware failure or from data

integrity faults that lead to an incorrect execution path." [12]

• Soft faults: "Do not cause immediate program interruption and are detectable via introspec-

tion by user code. Soft faults occur as "bit-flips" such as incorrect floating point or integer

data, or perhaps incorrect address values that still point to valid user data space. Although it

is difficult to detect all soft faults, some modest amount of introspection can be very effective

at dramatically reducing their impact." [12]

Abnormal"
Operation

Fault Failure

Soft Hard

Transient Sticky Persistent

A"fault"happens"inside"a"function,

it"may"or"may"produce"a"correct"

output"as"a"result.

Relative"to"the"current

level"of"abstraction
A"failure"is"a"fault"that"

Uleaks"outU,"so"the"function"""

misbehaves"from"an"outside"

perspective.

UHardU"faults"interrupt"the"program.

The"program"that"suffers"them"

cannot"detect"them"directly.

USoftU"faults"do"not"interrupt"the"program

immediately."User"code"can"dectect"them"via"

introspection.

Key:

"""Dotted"outline:

Beyond"this"scope.

Figure 4 Taxonomy of faults and failures. [4][12]

There are different kinds of faults which can happen during processing a program. How this

classification is done mainly depends on the level of abstraction. The main distinction between

faults and failures is that failures lead to incorrect outputs outside a function whereas faults only

misbehave inside a function and may produce incorrect data outside a function.

A fault can be also classified in a soft and hard fault. Soft faults are sometimes also called Silent

Data Corruptions (SDCs), these kinds of faults will not interrupt the program but will perhaps lead

to incorrect output results. If one of these faults influences the output of a program or function

then this fault becomes a failure, just for example the whole program crashes. Hard faults will

totally crash the entire program but it is possible to turn hard faults in soft faults like with check-

pointing such that the program is allowed to proceed. A further discrimination between faults and

failures can be found in figure 4 where also soft faults are classified in different kinds of faults.

Experimental Studies on FT-GMRES Page 53 of 226

A software program may totally crashes but if it is possible to continue with faulty data the

failure becomes a soft fault. If it is possible to proceed with those faulty data the outcome of the

solution will be perhaps valid or invalid. In the case of an invalid solution the soft fault becomes

a failure since the perturbation is not observed and corrected. Soft faults can be also classified

in three subgroups (persistent, sticky and transient). The occurrence of Silent Data Corruptions

(SDCs) must be decreased and in the best case totally negated.

The whole description of these subgroups can be found in the table below. The term persistent

means that those faulty data are not observed and corrected whereas a sticky fault indicates that

some data are only faulty for some restricted time. Transient faults occur in a really short time

but it is possible to become persistent because of exchanging some data in the main memory with

copying data from the cache (fast memory for the CPU) back to the main memory. If this is the

case without detecting the change it becomes impossible to correct this fault.

Sub-classification of soft faults [12]:

• Persistent fault: "The incorrect bit pattern will not change as execution proceeds. Example:

The primary source of a data value (and any subsequent copies) are incorrect, so there is no

ability to restore correct state." [12]

• Sticky fault: "The incorrect bit pattern can be corrected by direct action. Example: A backup

source for the data exists and can be used to restore correct state." [12]

• Transient fault: "The incorrect pattern occurs temporarily. Example: Data in a cache is in-

correct, but the correct value is still present in main memory and the cache value is flushed."

[12]

In figure 5 a further classification can be found according to the impact of reading a faulty bit. It

is mainly related to the ability of detecting and correcting a fault in a microprocessor system. A

true DUE is mainly a fault where a system has error detection but this fault is not correctable in

comparison to false DUE. A soft error (SDC) mainly affects the outcome if the system has no error

detection. Bit-flips in the main memory can be also undetected with no effect on the result.

faulty5bit5
is5read

bening5fault;
no5error bit5has5error5

protection

fault5correction
no5error

affects5program
outcome5?

affects5program
outcome5?

SDC false5DUE true5DUEbening5fault;
no5error

3

2

1

4 5 6

no
yes

detection5&5
correction

no
detection5only5

no
yes no yes

Figure 5 Classification of the possible outcomes of reading a faulty bit in a microprocessor

system. SDC = silent data corruption. DUE = detected unrecoverable error. [60]

Experimental Studies on FT-GMRES Page 54 of 226

5.7 Bitflips in practice [8][9][58][61][62][63][64]

Soft errors are mainly caused by the environment from cosmic rays or electrical noise but in gen-

eral through the huge energy spikes between two transistors which change the entire state of a

transistor and lead to the problem of flipping some bits because of the poor isolation between two

transistors. The purpose must be in computer systems to decrease the effect of bit-flips without too

much effort of checking and correcting all soft errors (see figure 4) in the DRAM (Dynamic Random

Access Memory [58]) because of increasing the energy requirements. DRAM is often specified as

RAM or main memory of a computer system, the content of this memory type must be refreshed

constantly.

The property of detecting and correcting all soft errors in the DRAM leads to high reliable

sections, this additional security costs a lot of money because of the extra energy usage even in

desktop computers reliable becomes an important factor. The aim must be to decrease the energy

requirements with lowering the voltage level of the DRAM [58] which is only a part of the whole

energy consumption of a computer system.

Nevertheless each contribution for lowering the energy requirements is needed to achieve exa

scale computing which are 1018 floating point operations per second (on a compute cluster). It is

also impossible to detect and correct each single bit-flip if the number of processors grows. There

are more and more transistors on less space mainly through better manufacturing processes that’s

why the number of relative bit-flips increases because each single transistor affects the other ones

surrounding it. In figure 6 a possible development of bit-flips in the DRAM is shown in the future

but also for the past and present, the expectation is that the number of bit-flips will increase.

Figure 6 Transistor size in the past, present and future with fault rates in FIT. [8]

The number of bit-flips has increased by a better manufacturing process from one generation

to the next generation of the DRAM in the past but as well in the present shown in figure 6. It is

Experimental Studies on FT-GMRES Page 55 of 226

expected that the soft error rate FIT (Failure In Time [65]) will also increase in the future through

better manufacturing processes because there are more and more transistors on less space where

each single transistor influences the others. This rate is usually given in 109 hours (FITh) which

means that it needs 109 hours from one single upset to the next one for flipping a bit but can be

also defined for seconds and other time units. If this rate is used for seconds then this fault rate

(FITs) is computed for 109 seconds but in the case of hours (FITh) are 109 hours used. Flipping a bit

is mainly caused by the fact that more and more transistors have less space on the same die (space

of the CPU - Central Processor Unit, integrated-circuit, . . .) because the density of transistors

increases.

Reliability of a computer system is also an important factor because each single bit-flip which

is not observed and not corrected in the used memory could lead to an increase of additional costs.

This is especially the case for large server clusters like for Google and Microsoft where each loss of

a system might cause bigger problems because of poor reliability. Therefore each failure of a server

will rise the costs. Some case studies about bit-flips in the DRAM can be found in [64]. This study

was done for three different vendors because of the need of anonymization those names are not

revealed. In this statistic the number of working hours is observed and as well the number of bit-

flips. All three vendors A, B and C are on the same server namely the Cielo cluster a supercomputer

located in Los Alamo. This cluster contains approximately 8500 compute nodes where each node

has about 32GB DDR3 RAM of memory capacity.

On this supercomputer each vendor has about the same size of DRAM capacity, just about a

third of the total DRAM capacity. During the measurement interval this DRAM was heavily utilized

which is shown in figure 7a whereas the fault rate of each vendor is shown in figure 7b with FITs

(1 failure/billion seconds). The number of operation hours of the used DRAM is high enough for

observing the failure rates with enough accuracy on this compute cluster (Cielo supercomputer).

A B C
Manufacturer

0

5

10

15

B
il
li
o
n
s
 o

f
D

R
A

M
 H

o
u
rs

(a) Operational hours per DRAM vendor

A B C
Manufacturer

0

20

40

60

80

F
IT

s
/D

R
A

M

Permanent

Transient

(b) Fault rates per DRAM vendor

Figure 7 Operational hours and fault rates per DRAM vendor. [64]

The definition of permanent and transient faults can be found in section 5.6 where most of the

error types are explained. Transient faults are bit-flips in the main memory which occur for a short

period of time whereas permanent faults are undetected and not correct in the main memory. In

figure 7b two interesting observations can be done. The first one is that more than 50 percent of

all faults are transient for all three vendors.

The next interesting observation which follows from the first one is that the vendor which has

Experimental Studies on FT-GMRES Page 56 of 226

the highest rate of transient faults also has the highest number of permanent faults which indicates

that transient faults also lead to persistent faults. It is not clear why in figure 7b manufacture A

and B differ maybe because of the usage of different protection methods.

Some other statistics can be found in [64] which are done on the Jaguar supercomputer [66]

this server has 18688 compute nodes and for each node there are 16 GByte DDR2 memory. A fault

rate of 0.057 - 0.071 FITh/Mbit (Mbit = 106 bits) can be found on this system. This fault rate (FITh)

per one million bits (Mbit) is really less. The fraction of 1 FITh/Mbit can be transformed from one

upset (change of a single bit) every 109 hours per 106 bits to 10−15 upsets/bit-hour (1 FITh/Mbit =

1 upset/109 hours/ 106 bits = 10−15 upsets/bit-hour) which are 5.7 - 7.1 ×10−17 upsets/bit-hour in

the case of 0.057 - 0.071 FITh/Mbit. This rate also shows that the number of bit-flips is really less

even on systems with a lot of memory capacity shown in [64]. This case study was done from the

year of 2009 until the late of 2010.

The next statistics about bit-flips in the DRAM can be found in [61]. This study was done on

several Google servers and with six different platforms. In this work a platform is defined by the

motherboard and memory generation. It tries to answer the questions how do CPU utilization,

temperature and memory allocation influence the number of bit-flips in the DRAM. This study

was done between January 2006 to June 2008 over 2.5 half years. In this paper the meaning of

correctable (CE) and uncorrectable errors (UE) are used, both are related to the number of bit-

flips. Uncorrectable errors cannot be detected and corrected with the ECC (Error Correcting Code)

memory.

In figure 8 the effect of aging of the DRAM is shown there is a strong(er) relation between the

age and the number of bit-flips in the DRAM. In [61] there is also shown that there is a slight cor-

relation between temperature, CPU and memory utilization, and for the number of bit-flips in the

DRAM. Furthermore the error rate is more influenced by the utilization and memory allocation of

the DRAM than on other properties. The temperature has only some slight effect on the error rate

of the DRAM but the CPU and memory utilization have more influence on the number of bit-flips.

Figure 8 Effect of aging of the DRAM. [61]

The next case study about bit-flips in the main memory can be found in [9]. This study is mainly

about how does the technology trend help to decrease or will perhaps increase the number of bit-

flips in the main memory. Another question is where most bit-flips come from and what is about the

average error rate (FITh) for different types of memory devices. Table 2 shows that the number of

bit-flips is quite high with SRAM (Static Random Access Memory) and it is significant higher than

Experimental Studies on FT-GMRES Page 57 of 226

using DRAM (Dynamic Random Access Memory). SRAM exhibits data remanence in contrast to

DRAM where the content has to be dynamic refreshed. DRAM is mainly used if huge capacities of

memory are needed like for the main memory of a computer system or for the memory of a graphic

card (GPU) whereas SRAM is used if memory with higher frequencies (higher access speed and

lower latencies) but with lower capacity is needed which is mainly applied for the caches (fastest

memory of a CPU and GPU).

In the case of the DRAM the number of bit-flips will decrease if a better manufacturing process

is used but through increasing the number of cell arrays (number of bits for storing the content)

the number of bit-flips will increase because there are more and more transistors on less space

as in the case of the MLC Flash (Multi Level Cell) which is used for example in USB devices. In

contrast to DRAM the FITh rate of SRAM will be always constant. This is mainly a pitfall between

SRAM and DRAM but the FITh/bit rate of SRAM is quite higher than using DRAM.

Device Type Soft Error Rate Comments

SRAM 10−4 to 10−2 FITh/bit "Flat trend with design rule. Single bit ECC protection

and interleave." [9]

DRAM - Cell 10−10 to 10−5 FITh/bit "Fixed cell capacitance causes downward trend as

design rule shrinks. ECC protection and interleave." [9]

DRAM - Logic 0.1 to 10 FITh/chip "Dominates cell upset in newer technologies

on a bit error rate basis. Requires multi-bit ECC." [9]

MLC Flash 10−8 to 10−5 FITh/bit "Trending up as process technology shrinks.

Embedded ECC protection." [9]

LOGIC ≈ 10x less than SRAM "Will probably trend flat as process technology shrinks.

Difficult to protect." [9]

Table 2 Summary of high energy neutron soft error rates. [9]

The author of [9] also mentioned that most of the bit-flips will come in the future from the logic

for accessing and updating the content of the memory device rather than from the cell arrays them-

selves which store the real content. This content can be easily secured with ECC (Error Correcting

Code) memory from flipping a bit. This protection method will also have a lower overhead if the

space of the content (number of bits for storing the real data) will increase in the future, therefore

only a few bits for securing a lot of bits are used with ECC memory.

The main focus of [67] is how reliability of a computer system can be defined because there is

a misinterpretation until now. The reliability of a computer system does not entirely depend on the

number of bit-flips but on the affect which is caused by them. There are also some comparisons be-

tween different protection methods for the memory, it comes out that nearly all are insufficient for

future computer systems like SEC-DEC which can only correct one bit-flip but can detect two of it.

Furthermore DRAM is also more problematic than SRAM because SRAM causes less uncorrectable

errors, therefore DRAM faults will be a major concern in the future.

Sometimes security is also related to bit-flips there is a common test of how stable a system

against bit-flips in the DRAM is, this test is nothing else as a security lack. This security invasion is

often called rowhammer attack which was first figured out by Yoongu Kim and his colleges in [63].

They observed that if bits from the same address in the DRAM are overwritten multiple times within

a short period of time than also bits which are near the same address can be affected too. Yoongu

Kim also figured out that the number of caused bit-flips mainly depends on the vendor system for

this security breach also called rowhammer attack. He discovered that the effect of changing the

Experimental Studies on FT-GMRES Page 58 of 226

state of a transistor rises with lowering the distance between two transistors because of a higher

electric disturbance. The according assembler code for the rowhammer attack (see algorithm 8)

is shown in table 3, where also a dummy code is used which has no influence on the number of

bit-flips (see algorithm 8).

Algorithm 7 Rowhammer Attack:

1: code1a:

2: mov (X), % Read from address X

3: mov (Y), % Read from address Y

4: clflush (X) %Flush cache for address X

5: clflush (Y) %Flush cache for address Y

6: mfence %Ensure global emory integrity

7: jmp code1a

Algorithm 8 Dummy Code:

1: code1b:

2: mov (X),

3: clflush (X)

4: mfence

5: jmp code1b

Table 3 Assembler code for testing of bit-flips. [63]

In this assembler code for testing of bit-flips with the rowhammer attack in algorithm 7 there

is no external influence of the content for two different accessed addresses in the DRAM but it is

really fast exchanged within the while loop (from line 1 to 7). The aim is just to affect other bits

and to change the states which are near those two addresses (X and Y). In line 2 and 3 of algorithm

7 (code1a) two different contents are read from two different addresses (X and Y) after reading the

contents they are exchanged in line 4 and 5 of algorithm 7, there is no external influence only the

contents of two different accessed addresses are exchanged.

The rowhammer attack (algorithm 7) can also be used as a benchmark because it shows in a

good way how often in a computer system bit-flips occur in comparison to other vendor systems.

In algorithm 8 there is also no external influence but it is mainly used to show that reading (line 2)

and writing (line 3) of the same address X has no influence on the number of bit-flips.

Bit-Flip Sandy Bridge Ivy Bridge Haswell Piledriver

’0’→ ’1’ 7992 10273 11404 47

’1’→ ’0’ 8125 10449 11467 12

Table 4 Number of bit-flips induced by disturbance on a 2GB module. [63]

Two vendors are compared in table 4 where the company Intel (with CPUs: Sandy Bridge, Ivy

Bridge, Haswell) has at most bit-flips in comparison to the company AMD (with CPU: Piledriver).

During this experiment the DRAM was initialized with zeros (’0’) and ones (’1’) and afterwards both

codes of table 3 were executed. The code1b (algorithm 8) doesn’t produce so much disturbances

as code1a but the rowhammer attack (algorithm 7) leads to a certain number of bit-flips shown in

table 4. If a bit changes its value from ’0’ →′ 1′ or ’1’ → ’0’ during the execution of code1a and

code1b then this is a bit-flip. The while loop in code1a and code1b was applied one million times

for both initializations (’0’, ’1’).

This attack or test with code1a can be eliminated with ECC memory (Error Correcting Code)

which costs more energy and money than using standard DRAM. There was a factor of 250 for the

number of bit-flips between these two mentioned vendors where the company Intel has at most

bit-flips. In this study [63] it comes out that bit-flips are related to the memory access speed of

the CPU. So in all bit-flips don’t only depend on the used technology and age but also on the used

vendor and memory access speed.

Experimental Studies on FT-GMRES Page 59 of 226

6 Flexible and Fault Tolerant GMRES (F and FT-solvers)

6.1 Flexible solvers (F-solvers)
6.1.1 Newton’s fixed point method and iterative refinement [68]

Flexible methods are mainly related to the Newton’s fixed point method because solving a linear

system Ax = b can be reformulated to search for a vector x where the function f(x) = b−Ax should

be minimized. This function f(x) is often called the residuum r. Newton’s fixed point method gives

the possibility to search for this vector x such that function f(x) should be minimized where a

solution is found for Ax = b iteratively. This method is a special case of the fixed point iteration.

In arbitrary functions or polynomials a root can be found, the main restriction for solving Ax = b

is there must be only one root for f(x). This method is now applied iteratively with an arbitrary

chosen start vector x0 for the solution vector x which should minimize the function f(x):

xj+1 = xj − (∇f(x))−1f(xj). (73)

So in the case of linear equation systems the function f(x) is set to f(x) = b − Ax and with the

according derivation of ∇f(x) = A. Therefore the residual rj is computed with rj = b − Axj for

each iteration j, so from the fixed point iteration the following relationship is observed:

xj+1 = xj − (∇f(x))−1f(xj) (74)

xj+1 = xj −A−1(b−Axj) (75)

xj+1 = xj +A−1rj . (76)

From the last equation 76 by setting Adj = rj or dj = A−1rj for the update vector dj of each

iteration j and using the initial starting vector x0 an iterative algorithm can be applied. This

algorithm is often called defect error correction because the residuum r should be minimized for

each iteration step j. The defect error correction method is shown in algorithm 9 for the given

matrix A, right hand side b and ε as the desired accuracy for solving Ax = b.

Algorithm 9 Iterative refinement with defect error correction [68]:

Input: Matrix A, right hand side b and tolerance ε for the relative residuum.

1: x0 = zeros() . Initial guess for vector x (double precision).

2: r0 = b−Ax0 . Compute starting residuum (double precision).

3: while ||rj ||2/||r0||2 > ε do . Check for convergence (double precision).

4: rj = b−Axj . Compute new residuum (double precision).

5: Solve Mdj = rj for dj . Apply preconditioning for matrix M (single precision).

6: xj+1 = xj + dj . Do the update for vector x (double precision).

7: end while

Defect error correction which is shown in algorithm 9 allows different precision levels like single

or double precision. The update in line 6 but as well checking for convergence in line 3 for the

solution vector xj+1 must be done in higher precision. All other computations can be applied with

lower precision like single precision. In the standard case preconditioning or solving Mdj = rj
is done in line 5 for a matrix M such that M ≈ A to ensure fast convergence. Matrix A can

be decomposed with the ILU -factorization [6] which can be also done for matrix M . The main

contrast between right preconditioning and flexible preconditioning is that in the case of right

preconditioning the problem Mdj = rj is solved always with the same number of iterations for the

inner solver but in flexible methods there are various iterations to achieve a specific accuracy.

Experimental Studies on FT-GMRES Page 60 of 226

6.1.2 The Flexible Conjugate Gradient (F-CG) method [15][32]

The Flexible Conjugate Gradient method (F-CG) is mainly based on the CG solver (see section

5.2.9.2). In this method the main aim of the inner solver is to improve the accuracy of the residuum

(search direction) for vector rj in line 4 of algorithm 10 whereas the outer solver has to check for

convergence in line 3. The inner solver has to solve the problem qj = Mjrj for vector rj (rj is the

current residuum) where matrix M can be a different matrix from A which should be approximately

the same like matrixA such thatM ≈A. In this case ε2 is the accuracy of the inner solver for solving

the problem qj = Mjrj . The inner solver does always a constant work in line 4 of algorithm 10,

preconditioning for the outer solver is mainly done in this line. Improving the accuracy for vector

rj gives some pros and cons. One obvious advantage is if the inner solver achieves a high enough

accuracy for the solution vector rj than most of the work can be done in the inner solver rather

than in the outer solver.

In contrast if the accuracy for vector rj (search direction) is too low of the inner solver then

the F-CG will converge slowly to the desired solution of x and the outer solver will need more

iterations. Furthermore in some scenarios applying any decomposition for matrix A to solve instead

the problem for matrix M in the inner solver is preferable with the property that A ≈ M . This

could speed up to solve the problem Ax = b for the whole solver. The achieved accuracy of the

inner solver is just crucial for the outer solver of the F-CG but also in general for other flexible

methods. The inner solver of the Flexible CG method should mainly improve the accuracy of the

current residuum rj which should also lead to a higher stability against the standard CG solver.

The F-CG is shown in algorithm 10 where in line 4 the inner solver is applied.

Algorithm 10 The Flexible Conjugate Gradient (F-CG) algorithm for solving a symmetric positive

definite system (SPD) [15][32]:

Input: Matrix A, right hand side b and initial starting vector x0 and ε as the accuracy for solving

Ax = b and m1 for the number of outer iterations and m2 for the iterations of the inner solver.

Output: Approximate solution of vector xj for j > 0.

1: j = 0, r0 = b−Ax0, xj = x0 . Compute starting residuum r0.

2: p0 = r0, ||rj ||22 = ||r0||22 = rT0 r0
3: while ||rj ||2/||r0||2 > ε and j < m1 do . Check for convergence.

4: Solve qj = Mjrj for rj . Do preconditioning like rj = CG(Mj , qj , rj−1,m2, ε2).

5: qj = Arj . Perform matrix vector product.

6: αj = ||rj ||22/(pTj qj) . Compute new step size αj .

7: xj+1 = xj + αjrj . Do the according step for current solution xj .

8: rj+1 = rj − αjqj . Compute a new residuum for xj .

9: β = ||rj+1||22/||rj ||22 . Compute a new step size for search direction pj .

10: pj+1 = rj+1 + βpj . New search direction for pj+1.

11: j = j + 1

12: end while

13: return xj

This algorithm 10 for the F-CG is mainly based on the CG solver (see section 5.2.9.2) which is

shown in algorithm 2. It does always the same work for each iteration in line 4. Solving different

matrices will lead to different behaviors so in every case different parameters have to be used

which will be an additional effort. Finding some good parameters for this flexible method is not

just easy as expected because there is restricted stuff known about flexible methods. Hence the

F-CG can solve the problem in the inner solver if M = A because it minimizes the residuum directly.

Experimental Studies on FT-GMRES Page 61 of 226

6.1.3 The Flexible Generalized Minimal Residual (F-GMRES) method [4][12]

The Flexible GMRES (F-GMRES) is based on the standard GMRES algorithm (see section 5.2.10).

In algorithm 11 there are two GMRES solvers used, one which does the flexible (right) precon-

ditioning in line 4 which can be also found in the defect error correction method (see section 9).

Solving wj = GMRES(Mj , qj , w0) for any vector wj (search direction) is the same like solving

x = GMRES(A, b, x0) for any vector x and matrix A with the right hand side b in the case of the

standard GMRES solver where the vector x solves the problem Ax = b with accuracy ε. The vector

w0 is just the initial solution of wj for solving Mjwj = qj . In this case ε2 is the accuracy of the inner

solver for solving the problem qj = Mjwj . The aim of the inner solver in algorithm 11 and line

4 is just to do the main work with preconditioning for the outer solver such that the outer solver

does less iterations to solve the problem Ax = b in comparison to the standard GMRES solver in

algorithm 6. So mainly this approach uses two times the GMRES solver from algorithm 6 as one for

the inner solver (line 4) and one for the outer solver in line 1 to 24. Like in the case of the GMRES

Algorithm 11 The Flexible GMRES (F-GMRES) algorithm without restarts [4][12]:

Input: Matrix A, right hand side b and initial starting vector x0 and ε as the accuracy for solving

Ax = b and m1 for the number of outer iterations and m2 for the iterations of the inner solver.

Output: Approximate solution of vector xm1
for m1 > 0.

1: r0 = b−Ax0 Compute initial residuum vector.

2: β = ||r0||2, q1 = r0/β Compute first basis vector q1.

3: for j = 1, 2, ...until convergence and j < m1 do

4: Solve qj = Mjwj for wj Do preconditioning like wj =

GMRES(Mj , qj , w0,m2, ε2, . . .). (In this master work Mj ≈M ≈ A.)

5: vj+1 = Awj (vj+1 = AM−1j qj) Perform matrix vector product.

6: . Orthogonalize basis vector qj (line 7-11).

7: for i = 1, 2, ...j do

8: hi,j = qTi vj+1

9: vj+1 = vj+1 − hi,jqi
10: end for

11: hj+1,j = ||vj+1||2
12: ... Do rank revealing decomposition [49] (, apply Givens rotation to Ĥ(1:j,1:j)).

13: if Ĥ(j + 1, j) < εMachine then Stopped if machine precision is

achieved because Ĥ(j + 1, j) ≈ 0 so no further residual reduction.

14: if Ĥ(1 : j, 1 : j) no full rank then

15: Did not converged. Try recovery strategies.

16: else

17: Solution is xj−1.

18: end if

19: end if

20: qj+1 = vj+1/hj+1,j New basis vector qj+1.

21: yj = argminy||Ĥ(i : j + 1, 1 : j)y − βe1||2 Solve least square problem.

22: xj = x0 + [q1, q2, . . . , qj]yj Compute solution xj .

23: end for

24: Solution found xj−1.

where the vector x can be reused for the next computation, the current computed vector wj gives

the possibility to restart the inner solver if the desired accuracy ε2 is not reached. Therefore the

F-GMRES overcomes some memory restrictions in comparison to the standard GMRES solver.

Experimental Studies on FT-GMRES Page 62 of 226

6.1.4 Determining the number of operations for (F-)GMRES and (F-)CG
In this section the workload of the CG and GMRES solver is determined but also for the flexible

methods. In general the number of operations in floating point operations or also called flops is

estimated for the main computations and not especially for the initialization. A flop is counted for

example if for two values an addition (a+ b) is done then it is a flop but if a and b are vectors with

length n then there are n flops. Most operations are done in the main loop like for the GMRES

solver in algorithm 6 between line 3 and 19 and for the CG in algorithm 2 between line 3 and 11.

Flops of the CG solver (see algorithm 2) at iteration m and with size n of matrix A:

Sparse matrix vector product (SpMV, line 4): 2mnnz(A) flops for all non-zero elements (nnz(A)) of

A at iteration m so there are about 2nnz(A) multiplications and additions for each iteration of m.

Orthogonalization (line 6 to line 10):

Line 5: n multiplications and n− 1 additions with 1 division.

Line 6: n multiplications and n additions.

Line 7: n multiplications and n additions.

Line 8: n multiplications and n− 1 additions with 1 division.

Line 9: n multiplications and n additions.

So in total there are 8n+ 2(n− 1) + 2 ≈ 10n vector operations at all for a matrix A with size n.

Total flops (FlopsCG) of the CG method at iteration m: FlopsCG(m,n,A) = (10n and 2nnz(A))m

operations for m iterations, additionally for the initialization some operations have to be done like

2nnz(A) and 3n vector operations for computing the residuum ||r||2 with n as the size of matrix A.

Total flops (FlopsF−CG) of the F-CG solver:

FlopsF−CG(m1,m2, n,A) = m1 FlopsCG(m2, n,A) + FlopsCG(m1, n,A) where m1 is the number of

iterations for the outer solver and m2 as the number of iterations for the inner solver of the F-CG.

Flops of the GMRES solver (see algorithm 6) at iteration m and with size n of matrix A:

Sparse matrix vector product (SpMV, line 4): In general there is for each non-zero element (nnz(A))

of matrix A a multiplication and addition therefore there are 2mnnz(A) operations for m iterations.

A value of two (2) is for general sparse matrices, for diagonal matrices a value of one (1) is used.

Orthogonalizing with MGS (line 5 - 10): ≈ 2m2n flops [48][69].

Givens rotation for a upper Hessenberg matrix (line 16): 3m2 flops (general case) [6][69][46].

Backward substitution of the decomposition for matrix Ĥ (line 17): m2 flops [5][47].

Update for vector x (line 18): 2mn flops in total [5][47].

In the case of a symmetric problem (see figure 105) there are 3m flops for the Givens rotations [46].

Total flops (FlopsGMRES) of the GMRES method at iteration m and for size n of matrix A:

FlopsGMRES(m,n,A) = 2mnnz(A) + 2m2n+ 3m2 +m2 + 2mn flops in total at iteration m and with

size n of matrix A ∈ Rn×n. The number of flops is estimated for a two stage method (MGS+Givens

rotation) those are counted for the most efficient version (algorithmic) of the GMRES algorithm.

Total flops (FlopsF−GMRES) of the Flexible GMRES method at iteration m1:

FlopsF−GMRES(m1,m2, n,A) = m1 FlopsGMRES(m2, n,A) +FlopsGMRES(m1, n,A) where m1 is the

number of iterations for the outer solver and with m2 for the number of inner iterations of the

F-GMRES method. This is the case without initialization for the inner solver of the F-GMRES but

there would be additionally (m1+1) SpMV products and 3mn vector operations for computing ||r||2.

Experimental Studies on FT-GMRES Page 63 of 226

6.1.5 Workloads of the outer and inner solver of F-CG for various matrix densities

0 100 200 300 400 500 600 700 800
Number of Outer Iterations (m1)

101

102

103

104

105

106

107

108

109

W
o

rk
lo

a
d

s
(F

lo
p

s)
o

f
th

e
In

n
e

r
a

n
d

O
u

te
r

S
o

lv
e

r
Outer Solver (m1)
25 Iterations (m2) for the Inner Solver
50 Iterations (m2) for the Inner Solver
75 Iterations (m2) for the Inner Solver
100 Iterations (m2) for the Inner Solver
125 Iterations (m2) for the Inner Solver

(a) Workloads of the outer and inner solver (m2) for different numbers of iterations of the

F-CG, the density of non-zero elements for matrix A is 0.001.

0 100 200 300 400 500 600 700 800
Number of Outer Iterations (m1)

101

102

103

104

105

106

107

108

109

1010

1011

W
o

rk
lo

a
d

s
(F

lo
p

s)
o

f
th

e
In

n
e

r
a

n
d

O
u

te
r

S
o

lv
e

r

Outer Solver (m1)
25 Iterations (m2) for the Inner Solver
50 Iterations (m2) for the Inner Solver
75 Iterations (m2) for the Inner Solver
100 Iterations (m2) for the Inner Solver
125 Iterations (m2) for the Inner Solver

(b) Workloads of the outer and inner solver (m2) for different numbers of iterations of the

F-CG, the density of non-zero elements for matrix A is 0.25.

Figure 9 Workloads of the outer and inner solver for different numbers of iterations of the F-CG

and various densities of non-zero elements for matrix A.

In figure 9 the workloads of the inner and as well outer solver of the F-CG are shown in number

of floating point operations or also called flops. The workloads are computed for a matrix with size

1000 × 1000 where a density of 1.00 means that all elements are non-zero elements in contrast a

density of 0.001 denotes a diagonal matrix with 1000 elements. The workload in number of floating

point operations for the CG (see section 6.1.4) can be computed with FlopsCG(m,n,A). Then the

workload for F-CG is given by FlopsF−CG(m1,m2, k, A) = m1 FlopsCG(m2, n,A)+FlopsCG(m1, n,A)

with m1 as the number of outer iterations. The increase of flops for the inner solver mainly depends

on the non-zero elements as in the case for the outer solver of the F-CG shown in figure 9a.

Experimental Studies on FT-GMRES Page 64 of 226

6.1.6 Workload distribution of F-CG for various densities of non-zero elements

0 100 200 300 400 500 600 700 800
Number of Outer Iterations (m1)

0

50

100

150

200

250

R
a

tio
o

f
W

o
rk

lo
a

d
s

(
=

F
lo

p
s

o
f

In
n

e
r

S
o

lv
e

r
F

lo
p

s
o

f
O

u
te

r
S

o
lv

e
r)

25 Iterations (m2) for the Inner Solver
50 Iterations (m2) for the Inner Solver
75 Iterations (m2) for the Inner Solver
100 Iterations (m2) for the Inner Solver
125 Iterations (m2) for the Inner Solver

(a) Ratio of workloads between the outer and inner solver (m2) for different numbers of

iterations, the density of non-zero elements for matrix A is 0.001.

0 100 200 300 400 500 600 700 800
Number of Outer Iterations (m1)

0

50

100

150

200

250

R
a

tio
o

f
W

o
rk

lo
a

d
s

(
=

F
lo

p
s

o
f

In
n

e
r

S
o

lv
e

r
F

lo
p

s
o

f
O

u
te

r
S

o
lv

e
r)

25 Iterations (m2) for the Inner Solver
50 Iterations (m2) for the Inner Solver
75 Iterations (m2) for the Inner Solver
100 Iterations (m2) for the Inner Solver
125 Iterations (m2) for the Inner Solver

(b) Ratio of workloads between the outer and inner solver (m2) for different numbers of

iterations, the density of non-zero elements for matrix A is 0.25.

Figure 10 Ratio of workloads between the outer and inner solver for different numbers of itera-

tions of the F-CG and various densities of non-zero elements for matrix A.

In figure 10 the ratio of workloads between the outer and inner solver of the F-CG is shown

for a matrix with size 1000 × 1000 where a density of 1.00 means that all elements are non-zero

elements in contrast a density of 0.001 denotes a diagonal matrix with 1000 elements. The total

workload in number of floating point operations or also called flops for the CG (see section 6.1.4)

can be computed by FlopsCG(m,n,A) with m as the number of iterations, nnz(A) as the number

of non-zero elements and n for the size of matrix A. For the F-CG the total workload is given by

FlopsF−CG(m1,m2, k, A) = m1 FlopsCG(m2, n,A) + FlopsCG(m1, n,A) with m1 for the outer itera-

tions. Therefore the ratio of flops for the inner and outer solver is m1 FlopsCG(m2,n,A)
FlopsCG(m1,n,A) = m2.

Experimental Studies on FT-GMRES Page 65 of 226

6.1.7 Workloads of the outer and inner solver of F-GMRES for various matrix densities

0 100 200 300 400 500 600 700 800
Number of Outer Iterations (m1)

104

105

106

107

108

109

1010

1011

W
o

rk
lo

a
d

s
(F

lo
p

s)
o

f
th

e
In

n
e

r
a

n
d

O
u

te
r

S
o

lv
e

r
Outer Solver (m1)
25 Iterations (m2) for the Inner Solver
50 Iterations (m2) for the Inner Solver
75 Iterations (m2) for the Inner Solver
100 Iterations (m2) for the Inner Solver
125 Iterations (m2) for the Inner Solver

(a) Workloads of the outer and inner solver (m2) for different numbers of iterations of the

F-GMRES, the density of non-zero elements for matrix A is 0.001.

0 100 200 300 400 500 600 700 800
Number of Outer Iterations (m1)

104

105

106

107

108

109

1010

1011

W
o

rk
lo

a
d

s
(F

lo
p

s)
o

f
th

e
In

n
e

r
a

n
d

O
u

te
r

S
o

lv
e

r

Outer Solver (m1)
25 Iterations (m2) for the Inner Solver
50 Iterations (m2) for the Inner Solver
75 Iterations (m2) for the Inner Solver
100 Iterations (m2) for the Inner Solver
125 Iterations (m2) for the Inner Solver

(b) Workloads of the outer and inner solver (m2) for different numbers of iterations of the

F-GMRES, the density of non-zero elements for matrix A is 0.25.

Figure 11 Workloads of the outer and inner solver for different numbers of iterations of the F-

GMRES and various densities of non-zero elements for matrix A.

In figure 11 the workloads for the inner and as well outer solver of the F-GMRES are shown in

number of floating point operations. The workloads are computed for a matrix with size 1000 ×
1000 where a density of 1.00 means that all elements are non-zero elements in contrast a density

of 0.001 denotes a diagonal matrix with 1000 elements. The workload in number of floating point

operations for the GMRES (see section 6.1.4) can be computed with FlopsGMRES(m,n,A). For

the F-GMRES the workload is given by FlopsF−GMRES(m1,m2, k, A) = m1 FlopsGMRES(m2, n,A) +

FlopsGMRES(m1, n,A) with m1 as the number of outer iterations. The increase of flops for the inner

solver mainly depends on the non-zero elements in contrast to the outer solver shown in figure 11a.

Experimental Studies on FT-GMRES Page 66 of 226

6.1.8 Workload distribution of F-GMRES for various densities of non-zero elements

0 100 200 300 400 500 600 700
Number of Outer Iterations (m1)

100

101

102

103

104

R
a

tio
o

f
W

o
rk

lo
a

d
s

(
=

F
lo

p
s

o
f

In
n

e
r

S
o

lv
e

r
F

lo
p

s
o

f
O

u
te

r
S

o
lv

e
r)

25 Iterations (m2) for the Inner Solver
50 Iterations (m2) for the Inner Solver
75 Iterations (m2) for the Inner Solver
100 Iterations (m2) for the Inner Solver
125 Iterations (m2) for the Inner Solver

(a) Ratio of workloads between the outer and inner solver for different numbers of itera-

tions, the density of non-zero elements for matrix A is 0.001.

0 100 200 300 400 500 600 700
Number of Outer Iterations (m1)

101

102

103

R
a

tio
o

f
W

o
rk

lo
a

d
s

(
=

F
lo

p
s

o
f

In
n

e
r

S
o

lv
e

r
F

lo
p

s
o

f
O

u
te

r
S

o
lv

e
r)

25 Iterations (m2) for the Inner Solver
50 Iterations (m2) for the Inner Solver
75 Iterations (m2) for the Inner Solver
100 Iterations (m2) for the Inner Solver
125 Iterations (m2) for the Inner Solver

(b) Ratio of workloads between the outer and inner solver for different numbers of itera-

tions, the density of non-zero elements for matrix A is 0.25.

Figure 12 Ratio of workloads between the outer and inner solver for different numbers of itera-

tions of the F-GMRES and various densities of non-zero elements for matrix A.

In figure 12 the ratio of workloads between the outer and inner solver of the F-GMRES is

shown for a matrix with size 1000 × 1000 where a density of 0.25 means that a fourth are non-

zero elements in contrast a density of 0.001 denotes a diagonal matrix with 1000 elements. The

total workload in number of floating point operations for the GMRES (see section 6.1.4) can be

computed by FlopsGMRES(m,n,A) with m as the number of iterations, nnz(A) as the number

of non-zero elements and n for the size of matrix A. For the F-GMRES the total workload is

given by FlopsF−GMRES(m1,m2, k, A) = m1 FlopsGMRES(m2, n,A) + FlopsGMRES(m1, n,A) with

m1 for the outer iterations. Therefore the ratio of the inner and outer solver in figure 12 is
m1 FlopsGMRES(m2,n,A)
FlopsGMRES(m1,n,A) ≈ m2

2

m1
which tends "fast" to zero for 25 inner iterations.

Experimental Studies on FT-GMRES Page 67 of 226

6.1.9 Workload distribution of F-GMRES for various densities of non-zero elements

0 100 200 300 400 500 600 700
Number of Outer Iterations (m1)

101

102

103

R
a

tio
o

f
W

o
rk

lo
a

d
s

(
=

F
lo

p
s

o
f

In
n

e
r

S
o

lv
e

r
F

lo
p

s
o

f
O

u
te

r
S

o
lv

e
r)

25 Iterations (m2) for the Inner Solver
50 Iterations (m2) for the Inner Solver
75 Iterations (m2) for the Inner Solver
100 Iterations (m2) for the Inner Solver
125 Iterations (m2) for the Inner Solver

(a) Ratio of workloads between the outer and inner solver for different numbers of itera-

tions, the density of non-zero elements for matrix A is 0.5.

0 100 200 300 400 500 600 700
Number of Outer Iterations (m1)

101

102

103

R
a

tio
o

f
W

o
rk

lo
a

d
s

(
=

F
lo

p
s

o
f

In
n

e
r

S
o

lv
e

r
F

lo
p

s
o

f
O

u
te

r
S

o
lv

e
r)

25 Iterations (m2) for the Inner Solver
50 Iterations (m2) for the Inner Solver
75 Iterations (m2) for the Inner Solver
100 Iterations (m2) for the Inner Solver
125 Iterations (m2) for the Inner Solver

(b) Ratio of workloads between the outer and inner solver for different numbers of itera-

tions, the density of non-zero elements for matrix A is 1.0.

Figure 13 Ratio of workloads between the outer and inner solver for different numbers of itera-

tions of the F-GMRES and various densities of non-zero elements for matrix A.

In figure 13 the ratio of workloads between the outer and inner solver of the F-GMRES is shown

for a matrix with size 1000 × 1000 where a density of 1.00 means that all elements are non-zero

elements in contrast a density of 0.5 denotes a matrix where the half are non-zero elements. The

total workload in number of floating point operations for the GMRES (see section 6.1.4) can be

computed by FlopsGMRES(m,n,A) with m as the number of iterations, nnz(A) as the number of

non-zero elements and n for the size of matrix A. For the F-GMRES the total workload is given by

FlopsF−GMRES(m1,m2, k, A) = m1 FlopsGMRES(m2, n,A) + FlopsGMRES(m1, n,A) with m1 for the

outer iterations. Therefore the ratio of the inner and outer solver is m1 FlopsGMRES(m2,n,A)
FlopsGMRES(m1,n,A) ≈ m2 in

figure 13 which tends slowly to zero because in matrix A are a lot of non-zero elements.

Experimental Studies on FT-GMRES Page 68 of 226

6.1.10 Workload distribution of F-GMRES for various densities of non-zero elements and

for a fixed outer iteration

0 20 40 60 80 100
Matrix Density of Non-Zero Elements in %

0

100

200

300

400

500

600

700

R
a

tio
o

f
W

o
rk

lo
a

d
s

(
=

F
lo

p
s

o
f

In
n

e
r

S
o

lv
e

r
F

lo
p

s
o

f
O

u
te

r
S

o
lv

e
r)

25 Iterations (m2) for the Inner Solver
50 Iterations (m2) for the Inner Solver
75 Iterations (m2) for the Inner Solver
100 Iterations (m2) for the Inner Solver
125 Iterations (m2) for the Inner Solver

(a) Ratio of workloads between the outer and inner solver for different densities of non-zero

elements of matrix A and for a specific outer iteration (m1) 10.

0 20 40 60 80 100
Matrix Density of Non-Zero Elements in %

0

50

100

150

200

250

300

R
a

tio
o

f
W

o
rk

lo
a

d
s

(
=

F
lo

p
s

o
f

In
n

e
r

S
o

lv
e

r
F

lo
p

s
o

f
O

u
te

r
S

o
lv

e
r)

25 Iterations (m2) for the Inner Solver
50 Iterations (m2) for the Inner Solver
75 Iterations (m2) for the Inner Solver
100 Iterations (m2) for the Inner Solver
125 Iterations (m2) for the Inner Solver

(b) Ratio of workloads between the outer and inner solver for different densities of non-zero

elements of matrix A and for a specific iteration (m1) 100.

Figure 14 Ratio of workloads between the outer and inner solver of the F-GMRES for various

densities of non-zero elements of matrix A and for a fixed outer iteration (m1).

Like in section 6.1.9 the ratio of workloads between the outer and inner solver of the F-GMRES

for different densities of non-zero elements is shown in figure 14. The main contrast is that the

ratio of workloads is only computed for some fixed outer iterations (m1) but for different densities

of non-zero elements of matrix A. As in section 6.1.9 the ratio of workloads between the outer and

inner solver is computed with m1 FlopsGMRES(m2,n,A)
FlopsGMRES(m1,n,A) which tends to about m2 for very high numbers

of non-zero elements. It also means in almost all cases most of the workload is done in the inner

solver but the ratio of workloads tends to zero for very large numbers of outer iterations (m1).

Experimental Studies on FT-GMRES Page 69 of 226

6.1.11 Workload distribution between F-GMRES and GMRES for various densities of non-

zero elements

0 100 200 300 400 500 600 700 800
Number of Outer Iterations (m1)

101

102

103

104

R
a

tio
o

f
W

o
rk

lo
a

d
s

(
=

F
lo

p
s

o
f

F
-G

M
R

E
S

F
lo

p
s

o
f

G
M

R
E

S
)

25 Iterations (m2) for the Inner Solver
50 Iterations (m2) for the Inner Solver
75 Iterations (m2) for the Inner Solver
100 Iterations (m2) for the Inner Solver
125 Iterations (m2) for the Inner Solver

(a) Ratio of workloads between F-GMRES and GMRES for different numbers of iterations,

the density of non-zero elements for matrix A is 0.001.

0 100 200 300 400 500 600 700 800
Number of Outer Iterations (m1)

101

102

103

104

R
a

tio
o

f
W

o
rk

lo
a

d
s

(
=

F
lo

p
s

o
f

F
-G

M
R

E
S

F
lo

p
s

o
f

G
M

R
E

S
)

25 Iterations (m2) for the Inner Solver
50 Iterations (m2) for the Inner Solver
75 Iterations (m2) for the Inner Solver
100 Iterations (m2) for the Inner Solver
125 Iterations (m2) for the Inner Solver

(b) Ratio of workloads between F-GMRES and GMRES for different numbers of iterations,

the density of non-zero elements for matrix A is 0.25.

Figure 15 Ratio of workloads between F-GMRES and GMRES for various densities of non-zero

elements of matrix A and different iterations for the inner solver (m2) of the F-GMRES.

In figure 15 the ratio of workloads between F-GMRES and GMRES for different numbers of

iterations of the inner solver (m2) and various densities of non-zero element for matrix A is shown.

Like in section 6.1.7 a matrix with size 1000 × 1000 is used where a density of 0.001 denotes a

diagonal matrix with 1000 non-zero elements. In contrast a density of 1.00 denotes a matrix where

all its values are non-zero elements. The number of operations is computed as in section 6.1.4.

In figure 15a the ratio tends to zero for very large outer iterations (m1) which means the GMRES

solver needs more operations than F-GMRES. In figure 15a and 15b this ratio tends to zero for very

large outer iterations and slowly because of the orthogonalization process from the GMRES solver.

Experimental Studies on FT-GMRES Page 70 of 226

6.2 Fault Tolerant Iterative Linear solvers (FT-solvers) [4][11][12]

6.2.1 Fault tolerance and selective reliability [11]

Fault tolerance is mainly based on the concepts of Dijkstra (1973) [11] these principles can be

also applied in different contexts. The first applying of the Dijkstra algorithm was in the relation

of communication systems. In this model there are some nodes or PCs where all of them are

connected through a communication network. For each node there can be also a different state

which can be at least valid or invalid which depends on some rules. Each state of each node also

relies on the neighbor states.

Furthermore in this model there is a global checker which observes if the whole system is in

a correct or invalid state which is also based on some rules similar to the case of local rules. The

whole system is in a valid state if these global rules are satisfied if one of them is hurt the whole

system is in an invalid state. There is also a global clock which brings each node into the next state

from the current state based on some predefined rules. The step size of this clock can be chosen

arbitrary which means it can be continuous or discrete. In the model of Dijkstra the step size is

chosen discrete.

The next computed state for each node also depends on the states of the neighbors. If any

node is in an invalid state a local mechanism based on some rules brings this node back in a valid

state. After some time steps the whole system should be in a valid state. This correction step for

each node can be done after a finite number of time steps periodically to guarantee that the whole

system converges to a valid state. Dijkstra allows to define different rules, it mainly depends on

the opinion what is considered as a valid or invalid state. There may be also some pitfalls because

some of these assumptions may be wrong.

In iterative methods these global rules are often based on some variables like the residuum

(||r||2 = ||Ax − b||2). In the case of the defect error correction or iterative refinement method in

section 9 the whole solver consists of an outer solver and inner solver. The outer solver has to

check for convergence (predefined rule) as long as the solution vector x doesn’t satisfy a specific

accuracy whereas the inner solver should do the main work. In the Newton’s fixed point method

but from the point of view of Dijkstra the outer solver is the global checker which has to check

these variables or rules like if the residuum (||r||2 = ||Ax− b||2) is minimized or not.

If one of these rules is not satisfied (e.g. the residuum is not minimized) the computation has

to be proceed as long as a solution is found for Ax = b. Then if a solution x is found or the whole

solver is in a valid state the residuum r is minimized. There can be also other rules defined for this

approach. In conclusion fault tolerant iterative linear solvers are nothing else as a generalization

of iterative refinement like in section 9 with the extension of the Dijkstra approach [11].

In figure 16 the main concept about fault tolerant iterative linear solvers is shown. There is an

initial solution x0 whereas the outer solver checks if the solution x for solving Ax = b computed so

far minimizes the residuum (||r||2 = ||Ax − b||2). If not the solution is improved in the inner solver

which is done in unreliability. After a finite number of iterations for the inner solver the outer solver

checks for convergence. This must be done in reliability because it must be guaranteed that the

decision based on some rules like if the residuum (||r||2 = ||Ax − b||2) is minimized or the solution

vector x is valid is reliable. In contrast to this approach it would be too chaotic if this would be

not the case such that there are no sections in the used algorithm where nothing is trustworthy so

nothing can be predicted of the computed solution x for solving Ax = b because everything would

be unreliable.

Experimental Studies on FT-GMRES Page 71 of 226

reliable

unreliable Inner Solver
(do preconditioning)

Outer Solver
(check for convergence)

if not valid
(not converged)

Initial Solution

Cannot improve
the current Solution.

Solution is found

if valid
(converged)

Figure 16 Illustration of the conceptual framework of Fault Tolerant Iterative Linear solvers.

6.2.2 Relation between iterative refinement and sand boxing

The main contrast between applying different precision levels and sandboxing with reliable and

unreliable sections is that reliability is related to higher precision but lower precision levels are

referred to unreliable computations. There must be always a section above all computations which

checks for correctness of Ax = b, this is always done with higher accuracy or with reliability.

It doesn’t matter how this part of the algorithm is designed which checks for convergence

and estimates the error of the solution vector x but this section must guarantee correctness of

the finally computed solution. In algorithm 12 and 13 two perspectives are shown, the first one

from the point of view with iterative refinement and two predefined precision levels (single and

double) in algorithm 12 and in contrast to sand-boxing like in algorithm 13. The outer solver

checks for convergence and correctness of the computed solution which is done in reliability, this

is mainly done during testing the condition of the while loop (line 4) in algorithm 12 and 13.

Algorithm 12 Iterative refinement with

different precision levels (single, double):

Input: Matrix A, right hand side b and

tolerance ε for the relative residuum.

1: x0 = zeros() single or

2: double precision

3: j = 0, r0 = b−Ax0 double precision

4: while ||rj ||2/||r0||2 > ε do double precision

5: rj = b−Axj double precision

6: Solve Mjdj = rj for dj single precision

7: xj+1 = xj + dj double precision

8: j = j + 1

9: end while

Algorithm 13 Iterative refinement with

sand boxing (reliable, unreliable):

Input: Matrix A, right hand side b

and tolerance ε for the relative residuum.

1: x0 = zeros() in reliable mode

2: or unreliable mode

3: j = 0, r0 = b−Ax0 in reliable mode

4: while ||rj ||2/||r0||2 > ε do in reliable mode

5: rj = b−Axj in reliable mode

6: SolveMjdj = rj for dj in unreliable mode

7: xj+1 = xj + dj in reliable mode

8: j = j + 1

9: end while

In algorithm 12 it is shown defect error correction with different precision levels. It is possible

to achieve the accuracy of double precision where most of the computations are done in single

precision during line 6 of algorithm 12. Algorithm 13 shows the same method but with sand

boxing where most of the computations should be done in unreliable mode during the same line 6.

Both algorithms are really similar the only thing which has changed is that computing with single

precision is now done with unreliability. Bad preconditioning comes now from bit-flips in the inner

solver (line 6) of algorithm 13 which leads to more iterations for the outer solver.

Experimental Studies on FT-GMRES Page 72 of 226

6.2.3 Some assumptions on the unreliable model

The aim of fault tolerant iterative linear solvers is that most of the operations should be done in

unreliable mode (in the inner solver) nevertheless if everything is done in unreliability it would

be not possible to get any deterministic behavior because every operation is allowed to fail. If

this would be the case the whole solver might never converge to a satisfying solution x in every

computation, so some assumptions must be done based on the according knowledge so far.

One good discrimination can be done by separating the used data in static and dynamic data.

Dynamic data are data where the values change during the computation whereas static data are

not allowed to do this like for the used matrix A and the right hand side b. So changing the state

is mainly allowed to the vector x for example. It would never be possible to check for convergence

with ||r||2 = ||Ax − b||2 because all data are perhaps faulty especially the matrix A and vector b in

this case a different problem would be solved for the matrix A and b.

Maybe matrix A and vector b can be reloaded from the hard disk. All other data are allowed

to change its state during the computation and can be faulty or not as long as no further assump-

tions are done for the unreliable mode. Also control structures like for-loops, if-clauses and index

variables for doing the memory access of matrix A and b should be error free and also accessing to

other variables for static data.

Therefore a further differentiation can be done because flipping a bit should be only possible

with floating point operations and not allowed for integer variables. Floating point values need

much more storage place than integer variables but allowing integer variables to fail will compli-

cate the whole model and will contribute really less for reducing the energy requirements.

Because of the assumption that matrix A and vector b should not be not effected from bit-flips

in the DRAM, faulty data from the cache (fast memory for the CPU) should also not disturb those

data in the main memory otherwise wrong data in the cache would change these data in the main

memory. It also means that data from the DRAM can be reloaded. Based on these assumptions

given above further adoptions can be done but those two main assumptions should not be hurt

because it will lead to any nondeterministic behavior and it wouldn’t be able to solve the problem

Ax = b.

Properties of the unreliable model:

• Integer variables are not allowed to fail because there will be less contribution for lowering

the energy requirements.

• Also for-loops, if-conditions and so on are done with high reliability because it will contribute

nothing if this would be done with low reliability.

• Faulting is mainly restricted to floating point values.

• Static data like for matrix A and b are not allowed to be faulty especially in the main memory.

• Dynamic data like the vector x are allowed to produce wrong results.

• Checking for convergence like the residuum ||r||2 = ||Ax− b||2 must be done in reliability.

Experimental Studies on FT-GMRES Page 73 of 226

6.2.4 The Fault Tolerant GMRES (FT-GMRES) method [4][12]

The Fault Tolerant GMRES (FT-GMRES) is similar to the Flexible GMRES (F-GMRES) as in section

6.1.3 the only thing which has changed is that solving wj = GMRES(Mj , qj , w0) for vector wj will

be done in unreliable mode where faulting is now allowed. The outer solver has still the duty to

check for correctnesses and convergence because most of the computations should be done in

unreliable mode. The Fault Tolerant GMRES (FT-GMRES) solver is shown in algorithm 14 only a

single line has changed. Line 4 in algorithm 14 has changed from reliable to unreliable mode in

contrast where everything is done with the same reliability as in the case of the F-GMRES solver

in section 6.1.3. This inner/outer - approach also allows to restart the inner solver (line 4) with a

solution vector wj if not a satisfying solution wj is computed so far. The vector w0 is just the initial

vector for the solution wj in algorithm 14 and line 4 for the inner solver. Bit-flips in the inner solver

(line 4) are not seen anymore as single events but as an error which disturbs vector wj and comes

mainly from the poor preconditioning and leads to the problem that the outer solver (line 3-23) has

to do more iterations if the inner solver does no satisfying preconditioning for the outer solver. In

algorithm 14 the value ε2 is the accuracy of the inner solver for solving the problem qj = Mjwj .

Algorithm 14 The Fault Tolerant GMRES (FT-GMRES) algorithm without restarts [4][12]:

Input: Matrix A, right hand side b and initial starting vector x0 and ε as the accuracy for solving

Ax = b and m1 for the number of outer iterations and m2 for the iterations of the inner solver.

Output: Approximate solution of vector xm1
for m1 > 0.

1: r0 = b−Ax0 Compute initial residuum vector.

2: β = ||r0||2, q1 = r0/β Compute first basis vector q1.

3: for j = 1, 2, ...until convergence and j < m1 do

4: Solve qj = Mjwj for wj Do preconditioning in unreliable

mode like wj = GMRES(Mj , qj , w0,m2, ε2, . . .). (In this master work Mj ≈M ≈ A.)

5: vj+1 = Awj (vj+1 = AM−1j qj) Perform matrix vector product.

6: . Orthogonalize basis vector qj (line 7-10).

7: for i = 1, 2, ...j do

8: hi,j = qTi vj+1

9: vj+1 = vj+1 − hi,jqi
10: end for

11: hj+1,j = ||vj+1||2
12: ... Do rank revealing decomposition [49] (, apply Givens rotation to Ĥ(1:j,1:j)).

13: if Ĥ(j + 1, j) < εMachine then Stopped if machine precision is

achieved because Ĥ(j + 1, j) ≈ 0 so no further residual reduction.

14: if Ĥ(1 : j, 1 : j) no full rank then

15: Did not converged. Try recovery strategies.

16: else

17: Solution is xj−1.

18: end if

19: end if

20: qj+1 = vj+1/hj+1,j New basis vector qj+1.

21: yj = argminy||Ĥ(i : j + 1, 1 : j)y − βe1||2 Solve least square problem.

22: xj = x0 + [q1, q2, . . . , qj]yj Compute solution xj .

23: end for

24: Solution found xj−1.

Experimental Studies on FT-GMRES Page 74 of 226

6.3 Dealing with rank deficiency in F-GMRES/FT-GMRES [70]

This is a short section which summarizes different strategies to handle unlucky preconditioning of

the inner solver in F-GMRES and FT-GMRES. These possibilities are not applied in this work.

6.3.1 Additional failure modes for the F-GMRES

In the case of the F-GMRES there are additional failure modes. For the F-GMRES the expression

of Ĥ(j + 1, j) = 0 does not necessary mean convergence because for the standard GMRES solver

Ĥ(1 : j, 1 : j) is always nonsingular if j is the smallest iteration index with Ĥ(j+1, j) = 0 in that case

[70]. In contrast for the Flexible GMRES Ĥ(1 : j, 1 : j) may not be nonsingular for the outer solver

in line 13 of algorithm 11. This is Saad’s proposition (2.2) in [3] which can also happen in exact

arithmetic for the F-GMRES. It is a really seldom event which may occur through an unlucky choice

of the preconditioners for the F-GMRES like for example if "M−1j = A and M−1j+1 = A−1" [70]. This

rank deficiency because of preconditioning can be inexpensive detect through a rank revealing

decomposition like in [49]. This approach does not need more operations than the standard QR

- factorization and can be done with O(m2) operations in m iterations for the upper Hessenberg

matrix. This ability to detect rank deficiency fits in the general approach of the F-GMRES it either:

1. "converges to the desired tolerance," [70]

2. "correctly detects an invariant subspace, with a clear indication (H(j + 1, j) = 0 and H(1 :

j, 1 : j) is nonsingular), or" [70]

3. "gives a clear indication of failure (H(j + 1, j) 6= 0 and detected rank deficiency of H(1 : j, 1 :

j))." [70]

These detector methods can be applied for the outer solver of the F-GMRES in line 13 of algo-

rithm 11.

6.3.2 Recover strategies for the FT-GMRES

If rank deficiency is detected in the outer solver of the FT-GMRES in line 15 of algorithm 14 then

different possibilities of fault correction can be applied. This line covers mainly the cases where

unlucky preconditioning is applied of the inner solver. So there are three different recover/re-

starting strategies to deal with unlucky preconditioning of the inner solver in the FT-GMRES:

1. "retry the current iteration starting from Line 5 inclusive;" [70]

2. "retry the current iteration after Line 5, but replace wj with a random" vector (scaled appro-

priately according to best estimates of ||A−1||2); or" [70]

3. "stop and return xj−1, the last good approximate solution." [70]

This table also covers different possibilities for the F-GMRES not only for the FT-GMRES be-

cause unlucky preconditioning can happen through a fault but as well without a fault.

Experimental Studies on FT-GMRES Page 75 of 226

6.4 Relaxation strategies for nested Krylov methods [47][71][72]
This section is mainly related to flexible methods of (inexact) Krylov methods but as well linked to

the initialization of the inner solver for F-GMRES and FT-GMRES. It gives also some short prospects

and strategies for preconditioning of the inner solver. This section sums up most of the important

topics and papers such that not in every case full proofs are given so mainly just see [71] and [72].

6.4.1 Relaxation strategies for inexact Krylov subspace methods [71]

The central problem of iterative methods is to find a vector x that approximately solves:

Ax? = b such that ||b−Ax||2 < θ (77)

, for a given accuracy θ which measures the distance to the right hand side b. In Krylov subspace

methods there is in each step a matrix vector product applied whereas in inexact Krylov subspace

methods not the the exact matrix vector product is performed such that there are some deviations.

So let Mη(v) be the approximate matrix vector operation of Av and with the relative precision η

such that:

Mη(v) = Av + g with ||g||2 ≤ η||A||2||v||2. (78)

In this case it is assumed that the matrix vector product of Mη(v) becomes more costly if

the relative precision η is chosen smaller. So let η be chosen dynamically for each matrix vector

operation and with the according residuum ||rj || = |b−Axj ||2 for each iteration j:

ηj =
θ

||rj ||2
. (79)

In this equation it becomes more obvious that for the very first matrix vector operations the

precision ηj for each iteration j has to be more precise because of the large residuum ||rj ||2.

Afterwards the precision ηj becomes more relaxed as soon as the used solver starts converging,

this is the point when the residuals become increasingly smaller. In inexact Krylov methods a

perturbation of ||gj−1||2 ≤ ηj−1||A||2||v||2 is added in step j for each matrix vector operation. In the

case of the GMRES following relation can be identified which links together the parts of interests:

AQm = Qm+1Ĥm and xm = QmĤ
−1
m e1 with Qme1 = b (80)

, with Ĥm being a (m + 1) ×m upper Hessenberg matrix and Ĥm as the m ×m upper block of

Ĥm. The equation of xm = QmĤ
−1
m e1 comes from equation 63 and by solving ||||r0||2e1− Ĥmy||2 for

vector y where ||r0||2 = ||b||2 = ||1||2 and x0 = 0. In the case of inexact Krylov methods then this

relation with the perturbation matrix Fm becomes:

AQm + Fm = Qm+1Ĥm and xm = QmĤ
−1
m e1 with Qme1 = b. (81)

The vector fj is the j + 1-th column of matrix Fm which contains the deviation from each exact

matrix vector product in the step j + 1 and therefore it follows that ||fj ||2 ≤ ηj ||A||2||qj ||2 for all

iterations and matrix vector operations which can be easily checked.

As a consequence of the perturbation term Fm the residual rm is not the residual anymore for

vector xm therefore rm is the computed residual instead of the true residual which is computed with

b−Axm. Then in inexact Krylov methods following equation becomes the main focus of interest:

||b−Axm||2 ≤ ||rm||2 + ||rm − (b−Axm)||2 (82)

Experimental Studies on FT-GMRES Page 76 of 226

, which expresses the residual gap between the true b − Axm and the computed residual rm. So

if the residual gap becomes small then there is also less distance between the true and computed

residual which means both are nearly the same. So from the above equation it follows that:

rm − (b−Axm) = rm − r0 +AQmĤ
−1
m e1 = −FmĤ−1m e1 = −

m∑
j=1

fj−1e
T
j Ĥ
−1
j e1. (83)

From this equation also following expression can be obtained with using the norm ||.||2:

−
m∑
j=1

fj−1e
T
j Ĥ
−1
j e1 ≤

m∑
j=1

ηj−1||A||2||qj−1||2||eTj Ĥ−1j e1||2 (84)

, which gives the upper bound of the perturbation and let ||A||2||qj ||2||eTj Ĥ−1j e1||2 ≤ ||A||2||A−1j ||2||rj ||2
with rj = b−Axj and xj as the approximate solution vector of the Krylov subspace Kj . Formula 84

shows that the reachable precision is determined by the residual gap which can be also used for in-

exact Krylov methods because if this iterative process is stopped at ||rj ||2 ≤ θ then the residual gap

specifies the precision of the inexact Krylov method, if θ is small then also the product with some

constants. Finally this bound holds mainly for exact matrix vector products not for the perturbed

matrix vector product of Av.

6.4.2 Nested inexact Krylov methods [71]

In this section nested Krylov methods are discussed which are shown in section 6.1 but also nested

inexact Krylov methods. In the case of inexact Krylov methods when solving the linear equation

system of Ad = r with at most the relative residual precision of ξ following notation is used:

d =Mξ(r), where d such that||r −Ad||2 ≤ ξ||r||2. (85)

Notice this is indeed in the case of flexible preconditioning like in algorithm 9 that may change

for each iteration step which depends on ξ but also on r.

6.4.2.1 The outer iteration: Richardson iteration

Then the inexact Krylov method is defined with the Richardson iteration as the outer iteration like

in algorithm 9 for iteration j = 1, . . . ,m by the following recurrence:

dj−1 =Mξj−1(rj−1)

xj = xj−1 + dj−1 (86)

rj = rj−1 +Aηj−1dj−1.

It can be easily verified that this also fits in the general idea of:

AQm + Fm = Qm+1Ĥm and xm = QmĤ
−1
m e1 with Qme1 = b. (87)

Furthermore with the help of the estimate for ||dj ||2 ≤ ||A−1||2||rj ||2(1 + ξj) following bound on

the norm can be found for the residual gap:

||rj − (b−Axj)||2 ≤ ||A||2
m−1∑
j=0

ηj ||dj ||2 ≤ ||A||2||A−1||2
m−1∑
j=0

ηj ||rj ||2(1 + ξj). (88)

This inequality also comes from ||rj − rj−1||2 ≤ ||Aηj−1dj−1||2. This result in formula 88 sug-

gests to pick up a tolerance ηj equal to θ/||rj ||2 in step j + 1 which is then consistent with the

unconditioned case. From the Richardson iteration following equation can be obtained:

Experimental Studies on FT-GMRES Page 77 of 226

||b−Axj ||2 = ||b−A(xj−1 + dj−1)||2
≤ ||rj−1 − (b−Axj−1)||2 + ||rj−1 −Adj−1||2
≤ ηj−1||A||2||xj−1||2 + ξj−1||rj−1||2.

This suggests to use ηj = ξj ||r||2 then roughly following equation can be obtained:

||b−Axj ||2 ≤ ||A||2||A−1||2ξj−1||rj−1||2. (89)

In formula 89 the main outcome is that the precision of the matrix vector product is chosen like

the current residual precision times the expected residual reduction. This version of the Richardson

iteration can be seen as periodic restart of a Krylov subspace method used for the inner iteration.

6.4.2.2 The outer iteration: Flexible GMRES (F-GMRES)

The Flexible GMRES which is based on Saad [5] is a way to deal with flexible preconditioning. This

method constructs an orthogonal basis matrix Qm+1 for AQm where wj = Pξ(qj) (preconditioned

basis vector) with the inexact matrix vector product then the most important relations can be

summarized with (see algorithm 11):

AQm + Fm = Qm+1Ĥm and xm = QmĤ
†
me1 with rm = Qm+1(I − ĤmĤ

†
m)e1, (90)

with Ĥm as an upper Hessenberg matrix. From this equation following relation is obtained:

||rm − (b−Am)||2 = ||FmĤ†me1||2 ≤ ||A||2||A−1||2||Ĥ†m||2
m−1∑
j=0

ηj ||rj ||2(1 + ξj). (91)

In general the norm of ||Ĥ†m||2 († is called the pseudo inverse according to Moore Penrose [69]

such that H−1 ≈ H†) is hard to estimate therefore it is assumed that ||Ĥ†m||2 is bounded by a modest

constant k then following equation can be obtained for the residual gap:

||rm − (b−Am)||2 = kθ||A||2||A−1||2||Ĥ†m||2(1 + max
j
ξj). (92)

If α is defined as (rj =)α = eTj+1(I − ĤjĤ
−1
j)e1 and by using the optimality condition of the

Flexible GMRES solver (the residual is decreased in the inner solver of the flexible method but in

the case of the GMRES solver there are basis vectors used) then following solution is found with

yj+1 = [(Ĥ−1j e1)T , α]T such that (for the full prove see [71] and [72]):

||rj+1||2 ≤ ||b−Axj+1||2 = ||b−AQj+1yj+1||2 = ||b− (AQjyj+1 +Awj+1yj+1)||2 =

||b−AQjĤ−1j e1 −Awj+1α||2 = ||(qj+1 −Awj+1)α||2 ≤ ξjα ≤ ||ξjrj ||2. (93)

The product of ξjα gives the bound for the residual reduction of the outer solver. This result

shows that in the case of the associated Arnoldi process this method suffers from reasonable break-

downs. For example if the residuals are very large than the Flexible GMRES might be not a good

choice because the bound which is given by ξjα is very rough such that a near break down cannot

be found. However if the value of ξj is small enough but also for all iterations ξ = ξj then it is

not such a serious problem and the Flexible GMRES shows a good converge behavior. Equation 93

also means that the residual reduction is bounded by the preconditioning of the inner solver.

It is also worth to say that this relation is always satisfied for wj+1 = 0 as initialization because it

is ensured that the new residuum (||rj+1||2) is at least smaller than ||αqj+1||2. In the case of flexible

preconditioning (right preconditioning) often a reduction for the inner solver is chosen such that

||(qj+1 − Awj+1)||2/||qj+1||2 ≤ ε2 which is the main contrast between flexible (always the same

precision in the inner solver) and right preconditioning (always the same number of iterations).

Experimental Studies on FT-GMRES Page 78 of 226

6.4.3 Some notes on the preconditioned GMRES solver [42][47]

In the standard case of the GMRES solver a Krylov polynomial is searched which minimizes the

2-norm of the residual rj = b−Axj with the Krylov subspace Kj = [r,Ar,A2r, . . . , Aj−1r] such that:

||rj ||2 = min
xj∈Kj(A,r)

||b−Axj ||2. (94)

Let xj ∈ Kj(A, r) = [r,Ar,A2r, . . . , Aj−1r] in other words xj =
∑j−1
i=1 ciA

ir where x0 = 0 (||r||2 =

||b||2) which should minimize the residual (||rj ||2). Then the residual (||rj ||2) can be rewritten to

||rj ||2 = ||b−A(
∑j−1
i=1 ciA

ir)||2. Furthermore define following polynomial pj as:

pj(A) = 1−
j−1∑
i=1

cjA
jr (95)

, which is the same like for formula 14. Then the 2-norm of the residual (||rj ||2) reduces to:

||rj ||2 = ||b−Axj ||2 = min
pj∈P j ,pj(0)=1

||pj(A)r||2 (96)

, with P j as a set of polynomials with degree j or less. In equation 96 a polynomial with the

lowest degree is searched which minimizes the residual of ||r||2. Just by dividing through ||r||2 the

residual reduction of the standard GMRES solver is shown and following equation can be obtained:

||rj ||2
||r||2

= min
pj∈P j ,pj(0)=1

||pj(A)||2. (97)

Now decompose matrix A with A = V ΛV −1 if it is diagonalizable where matrix Λ stores all

eigenvalues (λ) of A which is a diagonal matrix and let I = V V −1 then this equation becomes:

||rj ||2
||r||2

= min
pj∈P j ,pj(0)=1

||V ||2||pj(Λ)||2||V −1||2. (98)

Let κ(V)2 be the condition number (see section 72) of V then this equation can be reformulated:

||rj ||2
||r||2

= min
pj∈P j ,pj(0)=1

κ(V)2||pj(Λ)||2. (99)

Afterwards this equation becomes by only considering the largest eigenvalues (λ):

||rj ||2
||r||2

≤ min
pj∈P j ,pj(0)=1

κ(Q)2 max
λ∈ρ(A)

|pj(λ)| (100)

, where for the polynomial pj only the largest eigenvalues (λ) of the spectrum (ρ(A)) from

matrix A are important. Hence for unitary matrices as in the case of V the condition number of

V is 1. Equation 100 means that if the polynomial pj is small then the there is a fast residual

reduction. That’s why preconditioning should be used to decrease the spectrum (ρ(A)) of matrix

A. Let M−1Ax = M−1b be the preconditioned system in the case of left preconditioning and

AM−1x = bM−1 in the case of right preconditioning and decompose matrix A in A = M −N then

the system which should be solved is (I −B)x = b with B = NM−1 for right preconditioning. Now

formula 97 becomes with the decomposition of B = XDX−1, similar like for matrix A:

||rj ||2
||r||2

≤ min
pj∈P j ,pj(1)=1

κ(X)2 max
λ∈ρ(B)

|pj(λ)|. (101)

If the spectral radius of ρ(I − B) is lower than 1 then the problem of (I − B)x = b can be

solved otherwise not, for fast convergence the value of ρ(I − B) should be almost zero. Hence

preconditioning is not only applied in the way that always the same matrix M is used there can be

instead a second solver like in the case of flexible preconditioning (see section 6.1).

Experimental Studies on FT-GMRES Page 79 of 226

7 Experiments related to GMRES and F-GMRES
7.1 Relation between condition number and number of outer iterations of

GMRES and Flexible GMRES (F-GMRES)
In this section two different problems and matrices (see formula 102 and 103) are constructed to

get control over the condition number (||.||2) (see section 5.3) and to observe the impact of changing

this value on the number of outer iterations (m1) for the GMRES (see algorithm 6) and F-GMRES

(see algorithm 11) solver. This diagonal matrix D is mainly built to determine the number of outer

iterations (m1) and the impact of changing the condition number (||.||2) but as well the number of

iterations for the inner solver (m2) of the F-GMRES. The Flexible GMRES (F-GMRES) and the Fault

Tolerant GMRES (FT-GMRES) always consist of two solvers just one inner and one outer solver.

The outer solver of the Flexible GMRES (F-GMRES) is from line 3 to 24 in algorithm 11, it uses the

algorithm 6 of the standard GMRES solver as the inner solver in line 4 for preconditioning.

The aim of this two solver level nesting is that the inner solver should do the main work in

lower accuracy or in unreliable mode for the FT-GMRES and the outer solver only has to check for

convergence such that a satisfying solution is found. So most of the work should be done by the

inner solver whereas the outer solver should only do a few iterations. The problem here is just

that the inner solver can be stuck in too much work without converging to a desired solution so

there must be always a limit for the number of iterations of the inner solver. This limit (m2) for the

number of iterations for the inner solver can be also controlled this is the second parameter beside

for the accuracy of the solution vector wj . The used matrix A is now a diagonal matrix D to get con-

trol over the condition number (||.||2) which has the appearance for two different kinds of problems:

Problem 1 (positive definite): Problem 2 (positive definite):

Matrix with linear separated eigenvalues Matrix with linear separated eigenvalues

A = D =


d1 0 . . . 0

0
. . .

...
...

. . . 0

0 . . . 0 dn

 , (102) A = D =


1
d1

0 . . . 0

0
. . .

...
...

. . . 0

0 . . . 0 1
dn

 . (103)

This diagonal matrix D (for problem 1) is mainly built for easier controlling the condition num-

ber (||.||2) of a matrix A (= D). There are also other possibilities to control this number. This

diagonal matrix D for problem 1 is built with a lowest (d1) and largest value (dn) where the lowest

value is always set to 1 for variable d1 and for each trial but the greatest value dn is changed to

control the condition number (||.||2). All values in this matrix D are sorted in increasing order with

d1 < d2 < d3 < · · · < dn. The function to compute all other entries between the greatest (λn) and

lowest value (λ1) is a linear function with D(i) = y(i) = k(i − 1) + d1 for i = 1 . . . n − 1 but k is

computed with k = (dn − d1)/(n − 1). Thus the eigenvalues λ of the used diagonal matrix D are

precisely the D(i)s because of the relation Ax(= Dx) = λx. So the last eigenvalue (λn) is also

the greatest value (dn) of this matrix A(= D) which gives the possibility to control the condition

number κ(A)2 (||.||2) for each trial. The main contrast between problem 1 and problem 2 is that in

the case of problem 2 all values of matrix A are the inverse of matrix A for problem 1 where the

condition number is the same. In all experiments for F-GMRES and FT-GMRES the right hand side

b is always computed with b = Axsolution where xsolution is a vector with only ones, in contrast the

outer solver is always initialized with xstart a vector with only zeros (see section 12).

Experimental Studies on FT-GMRES Page 80 of 226

7.1.1 Problem 1, relation between condition number and preconditioning by the inner

solver of the F-GMRES with random values as initial vector for wj(w0)

In this section the number of outer iterations (m1) is examined through changing the number of

iterations for the inner solver (m2) of the F-GMRES as well the condition number (||.||2) of the

used matrix D introduced in the section before (see section 7.1). The relative residuum (||r||2 =

||Ax− b||2/||b||2) of the solution x to solve Ax = b is always lower than 10−9 for each trial.

50 550 1050 1550 2050 2500
Condition Number κ(A)2 (||.||2)

101

102

103

104

105

106

Nu
m

be
ro

fO
ut

er
Ite

ra
tio

ns
(m

1)

GMRES
F-GMRES(25) with 25 Inner Iterations (m2)
F-GMRES(50) with 50 Inner Iterations (m2)
F-GMRES(75) with 75 Inner Iterations (m2)
F-GMRES(100) with 100 Inner Iterations (m2)
F-GMRES(125) with 125 Inner Iterations (m2)

Figure 17 Problem 1, relation between condition number and preconditioning by the inner

solver of the F-GMRES. The inner solver is initialized with random values for vector wj(w0).

50 550 1050 1550 2050 2500
Condition Number κ(A)2 (||.||2)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

Sp
ee

d
Up

=
T
im
e G

M
R
E
S

T
im
e F
−G

M
R
E
S

F-GMRES(25) with 25 Inner Iterations (m2)
F-GMRES(50) with 50 Inner Iterations (m2)
F-GMRES(75) with 75 Inner Iterations (m2)
F-GMRES(100) with 100 Inner Iterations (m2)
F-GMRES(125) with 125 Inner Iterations (m2)

Figure 18 Problem 1, speed up for solution times of F-GMRES against the standard GMRES

solver with random values as the initial vector of wj(w0), for the inner solver of the F-GMRES.

In figure 17 the number of outer iterations is shown for problem 1 with different condition

numbers (||.||2), the inner solver of the F-GMRES is initialized with random values for vector wj(w0).

In figure 18 the speed ups of the F-GMRES against the GMRES solver are shown for different

numbers of iterations of the inner solver (m2), the F-GMRES is always slower with this initialization.

In this case the 2-norm of matrix A is the largest eigenvalue dn so preconditioning has to be done.

Experimental Studies on FT-GMRES Page 81 of 226

7.1.2 Problem 2, relation between condition number and preconditioning by the inner

solver of the F-GMRES with random values as initial vector for wj(w0)

In this section the number of outer iterations (m1) is examined through changing the number of

iterations for the inner solver (m2) of the F-GMRES as well the condition number (||.||2) of the

used matrix D introduced in the section before (see section 7.1). The relative residuum (||r||2 =

||Ax− b||2/||b||2) of the solution x to solve Ax = b is always lower than 10−9 for each trial.

50 550 1050 1550 2050 2500
Condition Number κ(A)2 (||.||2)

100

101

102

103

104

105

Nu
m

be
ro

fO
ut

er
Ite

ra
tio

ns
(m

1)

GMRES
F-GMRES(25) with 25 Inner Iterations (m2)
F-GMRES(50) with 50 Inner Iterations (m2)
F-GMRES(75) with 75 Inner Iterations (m2)
F-GMRES(100) with 100 Inner Iterations (m2)
F-GMRES(125) with 125 Inner Iterations (m2)

Figure 19 Problem 2, relation between condition number and preconditioning by the inner

solver of the F-GMRES. The inner solver is initialized with random values for vector wj(w0).

50 550 1050 1550 2050 2500
Condition Number κ(A)2 (||.||2)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

Sp
ee

d
Up

=
T
im
e G

M
R
E
S

T
im
e F
−G

M
R
E
S

F-GMRES(25) with 25 Inner Iterations (m2)
F-GMRES(50) with 50 Inner Iterations (m2)
F-GMRES(75) with 75 Inner Iterations (m2)
F-GMRES(100) with 100 Inner Iterations (m2)
F-GMRES(125) with 125 Inner Iterations (m2)

Figure 20 Problem 2, speed up for solution times of F-GMRES against the standard GMRES

solver with random values as the initial vector of wj(w0), for the inner solver of the F-GMRES.

In figure 19 the number of outer iterations is shown for problem 2 with different condition

numbers (||.||2), the inner solver of the F-GMRES is initialized with random values for vector wj(w0).

In figure 20 the speed ups of the F-GMRES against the GMRES solver are shown for different

numbers of iterations of the inner solver (m2), the F-GMRES is always slower with this initialization.

In this case the 2-norm of matrix A is always 1 so preconditioning of F-GMRES is unnecessary.

Experimental Studies on FT-GMRES Page 82 of 226

7.1.3 Problem 1, relation between condition number and preconditioning by the inner

solver of the F-GMRES with zero values as initial vector for wj(w0)

In this section the number of outer iterations (m1) is examined through changing the number of

iterations for the inner solver (m2) of the F-GMRES as well the condition number (||.||2) of the

used matrix D introduced in the section before (see section 7.1). The relative residuum (||r||2 =

||Ax− b||2/||b||2) of the solution x to solve Ax = b is always lower than 10−9 for each trial.

50 550 1050 1550 2050 2500
Condition Number κ(A)2 (||.||2)

100

101

102

103

104

105

Nu
m

be
ro

fO
ut

er
Ite

ra
tio

ns
(m

1)

GMRES
F-GMRES(25) with 25 Inner Iterations (m2)
F-GMRES(50) with 50 Inner Iterations (m2)
F-GMRES(75) with 75 Inner Iterations (m2)
F-GMRES(100) with 100 Inner Iterations (m2)
F-GMRES(125) with 125 Inner Iterations (m2)

Figure 21 Problem 1, relation between condition number (κ(A)2) and preconditioning by the

inner solver of the F-GMRES. The inner solver is initialized with zero values for vector wj(w0).

50 550 1050 1550 2050 2500
Condition Number κ(A)2 (||.||2)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

Sp
ee

d
Up

=
T
im
e G

M
R
E
S

T
im
e F
−G

M
R
E
S

F-GMRES(25) with 25 Inner Iterations (m2)
F-GMRES(50) with 50 Inner Iterations (m2)
F-GMRES(75) with 75 Inner Iterations (m2)
F-GMRES(100) with 100 Inner Iterations (m2)
F-GMRES(125) with 125 Inner Iterations (m2)

Figure 22 Problem 1, speed up for solution times of F-GMRES against the standard GMRES

solver with zero values as the initial vector of wj(w0), for the inner solver of the F-GMRES.

In figure 21 the number of outer iterations is shown for problem 1 with different condition

numbers (||.||2), the inner solver of the F-GMRES is initialized with zero values for vector wj(w0).

In figure 22 the speed ups of the F-GMRES against the GMRES solver are shown for different

numbers of iterations of the inner solver (m2), the F-GMRES is faster with this initialization. In this

case the 2-norm of matrix A is the largest eigenvalue dn so preconditioning has to be done.

Experimental Studies on FT-GMRES Page 83 of 226

7.1.4 Problem 2, relation between condition number and preconditioning by the inner

solver of the F-GMRES, zero values as initial vector for wj(w0)

In this section the number of outer iterations (m1) is examined through changing the number of

iterations for the inner solver (m2) of the F-GMRES as well the condition number (||.||2) of the

used matrix D introduced in the section before (see section 7.1). The relative residuum (||r||2 =

||Ax− b||2/||b||2) of the solution x to solve Ax = b is always lower than 10−9 for each trial.

50 550 1050 1550 2050 2500
Condition Number κ(A)2 (||.||2)

100

101

102

103

104

105

Nu
m

be
ro

fO
ut

er
Ite

ra
tio

ns
(m

1)

GMRES
F-GMRES(25) with 25 Inner Iterations (m2)
F-GMRES(50) with 50 Inner Iterations (m2)
F-GMRES(75) with 75 Inner Iterations (m2)
F-GMRES(100) with 100 Inner Iterations (m2)
F-GMRES(125) with 125 Inner Iterations (m2)

Figure 23 Problem 2, relation between condition number (κ(A)2) and preconditioning by the

inner solver of the F-GMRES. The inner solver is initialized with zero values for vector wj(w0).

50 550 1050 1550 2050 2500
Condition Number κ(A)2 (||.||2)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

Sp
ee

d
Up

=
T
im
e G

M
R
E
S

T
im
e F
−G

M
R
E
S

F-GMRES(25) with 25 Inner Iterations (m2)
F-GMRES(50) with 50 Inner Iterations (m2)
F-GMRES(75) with 75 Inner Iterations (m2)
F-GMRES(100) with 100 Inner Iterations (m2)
F-GMRES(125) with 125 Inner Iterations (m2)

Figure 24 Problem 2, speed up for solution times of F-GMRES against the standard GMRES

solver with zero values as the initial vector of wj(w0), for the inner solver of the F-GMRES.

In figure 23 the number of outer iterations is shown for problem 2 with different condition

numbers (||.||2), the inner solver of the F-GMRES is initialized with zero values for vector wj(w0). In

figure 24 the speed ups of the F-GMRES against the GMRES solver are shown for different numbers

of iterations of the inner solver (m2), the F-GMRES is always slower with this initialization. In this

case the 2-norm of matrix A is always 1 so preconditioning of F-GMRES is unnecessary.

Experimental Studies on FT-GMRES Page 84 of 226

7.2 Different test cases for GMRES and Flexible GMRES (F-GMRES)

7.2.1 GMRES and F-GMRES on different diagonal matrices - Inner solver initialized with

zero values

0.0 0.2 0.4 0.6 0.8 1.0 1.2
Number of Operations (Flops - analytical) ×108

10−14

10−12

10−10

10−8

10−6

10−4

10−2

100

102

104

106
R

el
at

iv
e

R
es

id
uu

m
||A

x
−b
|| 2

||b
|| 2

GMRES
F-GMRES(25) with 25 Inner Iterations (m2)
F-GMRES(50) with 50 Inner Iterations (m2)
F-GMRES(75) with 75 Inner Iterations (m2)

GMRES(25) Restarted GMRES after 25 Iterations
GMRES(50) Restarted GMRES after 50 Iterations
GMRES(75) Restarted GMRES after 75 Iterations

(a) Diagonal matrix with condition number 103.

0.0 0.5 1.0 1.5 2.0 2.5
Number of Operations (Flops - analytical) ×108

10−14

10−12

10−10

10−8

10−6

10−4

10−2

100

102

104

106

R
el

at
iv

e
R

es
id

uu
m
||A

x
−b
|| 2

||b
|| 2

Standard GMRES
F-GMRES(25) with 25 Inner Iterations (m2)
F-GMRES(50) with 50 Inner Iterations (m2)
F-GMRES(75) with 75 Inner Iterations (m2)

GMRES(25) Restarted GMRES after 25 Iterations
GMRES(50) Restarted GMRES after 50 Iterations
GMRES(75) Restarted GMRES after 75 Iterations

(b) Diagonal matrix with condition number 105.

Figure 25 Residuum curves of (F-)GMRES for different matrices with linear separated values.

In figure 25 the condition number (||.||2) is changed from 103 to 105 for a diagonal matrix D.

All used diagonal matrices D are built like in section 7.1 for problem 1 (see formula 102) which

means that all values are linear separated from each other one. In the case of a condition number

(||.||2) 1000 the first value (d1) is set to 1 whereas the last value (dn) is set to 1000. Figure 25

shows that the Flexible GMRES (F-GMRES) outperforms the standard GMRES solver on this kind of

problem for a positive definite matrix (see formula 29) but by also considering the needed number

of operations to converge to a specific residuum (||r||2 = ||Ax − b||2/||b||2). The inner solver of the

F-GMRES is initialized with zero values for vector wj(w0) (line 4 of algorithm 11). Restarting the

GMRES and reusing the old solution x from the previous computation is not a good approach.

Experimental Studies on FT-GMRES Page 85 of 226

7.2.2 GMRES and F-GMRES on different diagonal matrices with random values - Inner

solver initialized with zero values

0.0 0.5 1.0 1.5 2.0 2.5
Number of Operations (Flops - analytical) ×109

10−14
10−12
10−10
10−8
10−6
10−4
10−2

100
102
104
106
108

1010
1012
1014

R
el

at
iv

e
R

es
id

uu
m
||A

x
−b
|| 2

||b
|| 2

GMRES
F-GMRES(25) with 25 Inner Iterations (m2)
F-GMRES(50) with 50 Inner Iterations (m2)
F-GMRES(75) with 75 Inner Iterations (m2)

GMRES(25) Restarted GMRES after 25 Iterations
GMRES(50) Restarted GMRES after 50 Iterations
GMRES(75) Restarted GMRES after 75 Iterations

(a) Diagonal matrix with condition number 2104.31.

0.0 0.5 1.0 1.5 2.0 2.5
Number of Operations (Flops - analytical) ×109

10−14
10−12
10−10
10−8
10−6
10−4
10−2

100
102
104
106
108

1010
1012
1014

R
el

at
iv

e
R

es
id

uu
m
||A

x
−b
|| 2

||b
|| 2

Standard GMRES
F-GMRES(25) with 25 Inner Iterations (m2)
F-GMRES(50) with 50 Inner Iterations (m2)
F-GMRES(75) with 75 Inner Iterations (m2)

GMRES(25) Restarted GMRES after 25 Iterations
GMRES(50) Restarted GMRES after 50 Iterations
GMRES(75) Restarted GMRES after 75 Iterations

(b) Diagonal matrix with condition number 5870.31.

Figure 26 Residuum curves of (F-)GMRES for different matrices with random values.

In figure 26 a diagonal matrix D is used where for each trial all its values are randomized this

will lead to different condition numbers (||.||2). All values of this diagonal matrix D are randomly

computed such that matrix D is an arbitrary matrix. Figure 26 shows that the Flexible GMRES (F-

GMRES) outperforms the standard GMRES solver on this kind of problem for a non-positive definite

matrix (see formula 29) but by also considering the needed number of operations to converge to

a specific residuum (||r||2 = ||Ax − b||2/||b||2). The inner solver of the F-GMRES is initialized with

zero values for vector wj(w0) (line 4 of algorithm 11). Restarting the GMRES and reusing the old

solution x from the previous computation is not a good approach because of stagnation for the

accuracy of vector x. Figure 26 also shows that the F-GMRES has good properties to solve Ax = b.

Experimental Studies on FT-GMRES Page 86 of 226

8 Injecting errors in Fault Tolerant GMRES (FT-GMRES)

8.1 Introduction
The purpose of the FT-GMRES solver is that the main work should be done in unreliable mode (line

4 of algorithm 14) whereas the outer solver (line 14 - 19 of algorithm 14) should only check for

convergence within a few iterations. For testing the behavior of the FT-GMRES in the presence

of a single fault two types of perturbations are injected during the orthogonalization process for

computing hi,j (line 5 - 10 of algorithm 6) in the inner solver of the FT-GMRES (line 4 of algorithm

14). Both possibilities are based on the floating point representation where both types of faults

should give a baseline for other types of faults as well for further experiments.

The total number of iterations for the outer solver (m1) of the F(T)-GMRES is observed which

is needed to compute a solution x for solving Ax = b with a specific accuracy and without a

fault, afterwards the same problem is solved but during these computations values of hi,j from the

orthogonalization process are disturbed like in the case of a single fault for a single position of hi,j
such that some perturbations are induced (line 5 - 10 of algorithm 6). The following two types of

perturbations (Eperturbed) are injected during the orthogonalization process (line 5 - 10 of algorithm

6) which can be caused by a single fault, both values are based on the floating point representation:

Type Value

Error Type 1 Eperturbed = 10150

Error Type 2 Eperturbed = 10−300

Figure 27 Different error types which are used for observing the behavior of the FT-GMRES.

The total perturbation depends on the used norm (||.||2) of matrix A because the maximum

propagation which can be caused is based on the entries of matrix A, values of matrix A with

lower magnitude will give less change whereas values with a large magnitude of the used matrix

A will give a higher error propagation. Faulting in this master work is mainly done during the

orthogonalization process for computing hi,j (line 5-10 of algorithm 6) in the inner solver (line 4

of algorithm 14) of the FT-GMRES. For each new iteration j of the inner solver a matrix vector

product is performed (vj+1 = Aqj) which is also done in algorithm 6 and line 4. This operation

gives the upper bound for injecting a perturbation in vector vj+1 but as well hi,j .

For each sparse matrix vector product following operation is performed vj+1 = Aqj and by

using the norm (||.||2) it follows that ||vj+1||2 ≤ ||A||2||qj ||2. So if the vector qj is disturbed be-

cause of a fault then the maximum perturbation which can be injected in vector vj+1 is ||vj+1||2 =

||Einjected||2 ≤ ||A||2×||Eperturbed||2. Therefore the product of ||A||2||× ||Eperturbed||2 gives the upper

bound for a single fault in vector vj+1. Injecting NaNs or Infs will reveal nothing therefore it is

recommended to use floating point values as perturbations for variable Edisturbed. Hence in general

the vector ||qj ||2 is set to 1 (||q||2 = 1) because of the normalized residuum (||r0||2β = ||1||2 = ||q1||2)

which is computed in the standard GMRES solver, this fact can be also used as an error detector.

Ĥ(i, j) is mainly related to the positions of the built Hessenberg matrix whereas hi,j is related

to the positions of the orthogonalization process. For the very first positions of hi,j (line 5-10 of

algorithm 6) faulting during the matrix vector product is the same as faulting during the orthog-

onalization process. For each position of hi,j with i = 1 a matrix vector product is applied for

every j such that a fault can be also injected with h̄i,j = hi,j × ||A||2 × Eperturbed over the whole

orthogonalization process with a disturbed hi,j (h̄i,j) including the sparse matrix vector product.

Experimental Studies on FT-GMRES Page 87 of 226

8.2 Error Injection Methology
The aim of GMRES as well F(T)-GMRES is to build a Hessenberg matrix Ĥ to solve the equation

system Ax = b. The Hessenberg matrix Ĥ is build during the orthogonalization process through

computing hi,j (in line 5-10 of algorithm 6) with the Gram Schmidt (GS) or the Modified Gram

Schmidt process (MGS) which ensures more stability. In the case of a symmetric problem this or-

thogonalization process leads to a tridiagonal matrix (see formula 105) which is a special case of

an upper Hessenberg matrix Ĥ whereas for a non-symmetric system an upper Hessenberg matrix

will be built (see formula 104). Formular 104 and 105 show these matrices before applying the

Givens rotation (see section 5) which eliminates values. Symmetric problems are problems if rows

and columns are exchanged such that matrix A is unchanged (A = AT). In the case of a diagonal

matrix (symmetric), matrix Ĥ will be as well a tridiagonal matrix [38]. If some of those entries are

disturbed a penalty in solving time should be observed for the FT-GMRES solver (see section 6.2.4).

Upper Hessenberg matrix Tridiagonal (Hessenberg) matrix
→ Iteration (Index) j

Ĥ(i, j) =

→
Ite

ra
tio

n
(In

d
e
x)

i


x x x x

x x x x

0 x x x

0 0 x x

 , (104)

→ Iteration (Index) j

Ĥ(i, j) =

→
Ite

ra
tio

n
(In

d
e
x)

i


x x 0 0

x x x 0

0 x x x

0 0 x x

 . (105)

A worst case scenario should be observed if one of the first entries of the Hesserberg matrix

(Ĥ1,j) is disturbed since all other values afterwards are still affected. In further computations

faulting is also done on the last positions of the Hessenberg matrix (Ĥi=j,j). There are mainly two

test cases like faulting on the first Modified Gram Schmidt iteration (h1,j) and faulting on the last

Modified Gram Schmidt iteration (hi=j,j) which are observed in this work for a single perturbation

during the orthogonalization process for computing hi,j in the inner solver of the FT-GMRES:

1. Faulting on the first MGS-iteration (hi=1,j): Faulting is done for positions of hi=1,j during the

orthogonalization process (hi,j) whereas the position j is changed for each single trial.

2. Faulting on the last MGS-iteration (hi=j,j=i): Faulting is done on the last positions of hi=j,j=i
during orthogonalization (hi,j), it is totally different from faulting on the first iteration.

Figure 28 Two possibilities of faulting during the orthogonalization process in the FT-GMRES.

In the following experiments the number of outer iterations (m1) is determined in a failure-free

run. After the first run the computation is repeated (for all outer iterations) like in section 9.1 for

some position of hi,j in the inner solver of the FT-GMRES where the Hessenberg matrix Ĥ should

be disturbed. Single values of the Hessenberg matrix Ĥ(i, j) are set to be faulty because of a single

disturbance during the orthogonalization process (hi,j). For these experiments there are also two

possible cases like faulting on the first MGS (hi=1,j) and on the last MGS (hi=j,j) iteration shown in

table 28. On these positions where single values of Ĥ are disturbed there are also two possibilities

of faulting with two types of errors shown in table 27. For each trial with a single fault where

one of these values of the Hessenberg matrix Ĥ is disturbed the number of outer iterations (m1) is

observed to converge to the same relative residuum (||r||2 = ||Ax− b||2/ ||b||2) for example 10−9 as

without faulting, it means that always the same accuracy with/without a fault must be achieved.

Experimental Studies on FT-GMRES Page 88 of 226

9 Experiments related to Fault Tolerant GMRES (FT-GMRES)
9.1 Faulting on the first and last Modified Gram Schmidt (MGS) iteration
9.1.1 Faulting on the first MGS-iteration - Inner solver initialized with random values

0 50 100 150 200 250 300 350
Aggregate Inner Solve Iteration (j) that Faults (m2)

14

16

18

20

22

Nu
m

be
ro

fO
ut

er
Ite

ra
tio

ns
(m

1) Computations with Faulting of : hi,j = hi,j x ||A||2 x 10150

Outer Iterations without Faulting
Outer Solver - Check for Convergence

Figure 29 Faulting with a single disturbance and error type 1 on the first MGS-iteration (hi=1,j)

during solving a diagonal matrix with condition number 142.5 for i = 1 and j = 1, . . . , 25.

0 50 100 150 200 250 300 350
Aggregate Inner Solve Iteration (j) that Faults (m2)

14

16

18

20

22

Nu
m

be
ro

fO
ut

er
Ite

ra
tio

ns
(m

1) Computations with Faulting of : hi,j = hi,j x ||A||2 x 10−300

Outer Iterations without Faulting
Outer Solver - Check for Convergence

Figure 30 Faulting with a single disturbance and error type 2 on the first MGS-iteration (hi=1,j)

during solving a diagonal matrix with condition number 142.5 for i = 1 and j = 1, . . . , 25.

In figure 29 faulting with error type 1 for a single perturbation of 10150 on hi=1,j is more critical

than faulting with 10−300 and error type 2 in figure 30 for single faults. In figure 30 there are only

some specific positions namely Ĥ(1, 2) where some overhead is caused. The inner solver of the FT-

GMRES is initialized with random values for vector wj(w0), it does 25 iterations (j = 1, . . . , 25) for

each execution. The used matrix A is built like in section 7.1 for problem 1 (see formula 102). The

relative residuum (||r||2 = ||Ax − b||2/ ||b||2) is below 10−9 for all trials and solutions of x. Vertical

bars in figure 29 and 30 indicate the start of a new inner solve of the FT-GMRES.

Experimental Studies on FT-GMRES Page 89 of 226

9.1.2 Faulting on the last MGS-iteration - Inner solver initialized with random values

0 50 100 150 200 250 300 350
Aggregate Inner Solve Iteration (j) that Faults (m2)

13

14

15

16

17

18

19

Nu
m

be
ro

fO
ut

er
Ite

ra
tio

ns
(m

1) Computations with Faulting of : hi,j = hi,j x ||A||2 x 10150

Outer Iterations without Faulting
Outer Solver - Check for Convergence

Figure 31 Faulting with a single disturbance and error type 1 on the last MGS-iteration (hi=j,j)

during solving a diagonal matrix with condition number 142.5 for i = 1 and j = 1, . . . , 25.

0 50 100 150 200 250 300 350
Aggregate Inner Solve Iteration (j) that Faults (m2)

13

14

15

16

17

18

19

Nu
m

be
ro

fO
ut

er
Ite

ra
tio

ns
(m

1) Computations with Faulting of : hi,j = hi,j x ||A||2 x 10−300

Outer Iterations without Faulting
Outer Solver - Check for Convergence

Figure 32 Faulting with a single disturbance and error type 2 on the last MGS-iteration (hi=j,j)

during solving a diagonal matrix with condition number 142.5 for i = 1 and j = 1, . . . , 25.

Single faults during the last positions of hi,j (hi=j,j) have nearly no affect on the number of outer

iterations presented in figure 31 and 32 regardless of the size of the perturbation. It means that

faulting on the last positions of hi,j is almost uncritical for faults on hi=j,j . The inner solver of the

FT-GMRES is initialized with random values for vector wj(w0), it does 25 iterations (j = 1, . . . , 25)

for each execution. The used matrix A is built like in section 7.1 for problem 1 (see formula 102).

The relative residuum (||r||2 = ||Ax − b||2/ ||b||2) is below 10−9 for all trials and solutions of x.

Vertical bars in figure 31 and 32 indicate the start of a new inner solve of the FT-GMRES.

Experimental Studies on FT-GMRES Page 90 of 226

9.2 Testing of all positions of the orthogonalization with single faults
In order to get a point of view for faults on all positions during the orthogonalization process (hi,j)

a matrix H̄(i, j) can be build instead which shows the number of outer iterations (m1) for a single

fault on a specific position during building the Hessenberg matrix Ĥ(i, j) in the inner solver of the

FT-GMRES (line 4 of algorithm 14). This matrix H̄(i, j) can be seen as a pseudo Hessenberg matrix

where all values of H̄(i, j) are not those values of the orthogonalization process for computing hi,j
(from line 5-10 of algorithm 6) but the achieved number of outer iterations (m1) for the FT-GMRES.

This matrix H̄(i, j) is shown in formula 106, faulting can be only applied on values of the upper

part of the pseudo Hessenberg matrix (H̄(i, j)) respecitive h̄i,j marked with "×" whereas the lower

part shows the number of outer iterations (m1) without faulting marked with "∗". At positions

where the index i is greater than j (i > j) no faulting can be applied in algorithm 6 for the given

loop variables i and j. On positions where i ≤ j faulting with any kind of perturbation (Eperturbed)

can be applied like hi,j = hi,j×||A||2×Eperturbed (from table 27). Matrix H̄(i, j) shows the maximum

occurrence for the number of outer iterations (m1) in the presence of a single fault on a specific

position of hi,j in the inner solver of the FT-GMRES (see algorithm 14 and line 4).

Matrix H̄(i, j) which shows the number of outer iterations (m1) in the presence of a

single fault for each position of hi,j in the inner solver of the FT-GMRES:

H̄(i, j) =

Ite
ra

tio
n

(In
d

e
x)
i→



× × × × × × × × ×
× × × × × × × ×
× × × × × × ×
× × × × × ×
× × × × ×
× × × ×

F × × ×
× ×
×


N

u
m

b
e
r

o
f

O
u

te
r

It
e
ra

ti
o
n

s

(F
T-

G
M

R
E

S
)

Iteration (Index) j →
(106)

Figure 33 Matrix H̄(i, j) which visualizes where faulting is applied during the orthogonalization

process (hi,j) in the inner solver of the FT-GMRES with the according outer iterations (m1).

In formula 106 each position marked with "×" shows at which position it is possible to apply a

fault with a perturbation (Eperturbed) such that hi,j = hi,j×||A||2×Eperturbed. This comes mainly from

the fact that the loops in algorithm 6 for the index variables i and j describe an upper Hessenberg

matrix Ĥ(i, j). Faulting can be only applied if i ≤ j, these positions are marked with "×".

Formula 106 shows the maximum number of outer iterations in the presence of a single fault

in matrix H̄(i, j). All other positions of the orthogonalization process (hi,j) where faulting is not

applied are marked with "*". In figure 106 a matrix is shown with size of 9 × 9, so there are 9

iterations at all for the inner solver of the FT-GMRES (line 4 of algorithm 14). The related overhead

is defined as:

Overhead =
Maximum number of outer iterations (in the presence of a fault)

Number of outer iterations without a fault +1
. (107)

This additional iteration (+1) is mainly for the next trials with a single fault because the used

solver (FT-GMRES) has to achieve the same relative residuum as for the first trial without a fault

(F-GMRES). For each trial a relative residuum (||r||2 = ||Ax− b||2)/||b||2) of 10−9 must be achieved.

Experimental Studies on FT-GMRES Page 91 of 226

9.2.1 Faulting on a matrix with low condition number - Inner solver initialized with zero

values (and with 25 iterations for the inner solver)

1 5 10 15 20 25
Iteration (Index) j→

1

5

10

15

20

25

←
Ite

ra
tio

n
(In

de
x)
i

No Fa
ult

ing

Iterations w.o. Faulting:4

Number of Outer Iterations with and without Faulting
(Pseudo Hessenberg Matrix H̄(i, j))

4

5

6

N
um

be
ro

fO
ut

er
Ite

ra
tio

ns
(m

1)
(a) Faulting with:

hi,j = hi,j × ||A||2 × 10150

1 5 10 15 20 25
Iteration (Index) j→

1

5

10

15

20

25

←
Ite

ra
tio

n
(In

de
x)
i

No Fa
ult

ing

Iterations w.o. Faulting:4

Number of Outer Iterations with and without Faulting
(Pseudo Hessenberg Matrix H̄(i, j))

4

5

6

N
um

be
ro

fO
ut

er
Ite

ra
tio

ns
(m

1)

(b) Faulting with:

hi,j = hi,j × ||A||2 × 1050

1 5 10 15 20 25
Iteration (Index) j→

1

5

10

15

20

25

←
Ite

ra
tio

n
(In

de
x)
i

No Fa
ult

ing

Iterations w.o. Faulting:4

Number of Outer Iterations with and without Faulting
(Pseudo Hessenberg Matrix H̄(i, j))

4

5

6

N
um

be
ro

fO
ut

er
Ite

ra
tio

ns
(m

1)

(c) Faulting with:

hi,j = hi,j × ||A||2 × 10−0.5

1 5 10 15 20 25
Iteration (Index) j→

1

5

10

15

20

25

←
Ite

ra
tio

n
(In

de
x)
i

No Fa
ult

ing

Iterations w.o. Faulting:4

Number of Outer Iterations with and without Faulting
(Pseudo Hessenberg Matrix H̄(i, j))

4

5

6

N
um

be
ro

fO
ut

er
Ite

ra
tio

ns
(m

1)
(d) Faulting with:

hi,j = hi,j × ||A||2 × 10−300

Figure 34 Number of outer iterations for a single fault during orthogonalization (hi,j) and for

various disturbances while solving a diagonal matrix with condition number 142.5.

In figure 34 faulting with different types of errors is presented, it shows that faulting with

large perturbations (10150 and 1050) is critical on some positions of H̄(i, j). Furthermore faulting

with perturbations of 10−0.5 and 10−300 like in figure 34c and 34d is only critical on some specific

positions (H̄(1, 2), H̄(2, 3), H̄(3, 4), . . .). The worst overhead is 20 % (= 6
5) in the presence of a

single fault. In figure 34 are 4 outer iterations (m1) needed for the F(T)-GMRES without a fault.

The inner solver is initialized with zero values for vector wj(w0). The used matrix A for figure 34 is

built like in section 7.1 for problem 1, the relative residuum is below 10−9 for all computations.

Experimental Studies on FT-GMRES Page 92 of 226

9.2.2 Faulting on a matrix with high condition number - Inner solver initialized with zero

values (and with 25 iterations for the inner solver)

1 5 10 15 20 25
Iteration (Index) j→

1

5

10

15

20

25

←
Ite

ra
tio

n
(In

de
x)
i

No Fa
ult

ing

Iterations w.o. Faulting:8

Number of Outer Iterations with and without Faulting
(Pseudo Hessenberg Matrix H̄(i, j))

8

9

10

11

N
um

be
ro

fO
ut

er
Ite

ra
tio

ns
(m

1)
(a) Faulting with:

hi,j = hi,j × ||A||2 × 10150

1 5 10 15 20 25
Iteration (Index) j→

1

5

10

15

20

25

←
Ite

ra
tio

n
(In

de
x)
i

No Fa
ult

ing

Iterations w.o. Faulting:8

Number of Outer Iterations with and without Faulting
(Pseudo Hessenberg Matrix H̄(i, j))

8

9

10

11

N
um

be
ro

fO
ut

er
Ite

ra
tio

ns
(m

1)

(b) Faulting with:

hi,j = hi,j × ||A||2 × 1050

1 5 10 15 20 25
Iteration (Index) j→

1

5

10

15

20

25

←
Ite

ra
tio

n
(In

de
x)
i

No Fa
ult

ing

Iterations w.o. Faulting:8

Number of Outer Iterations with and without Faulting
(Pseudo Hessenberg Matrix H̄(i, j))

8

9

10

N
um

be
ro

fO
ut

er
Ite

ra
tio

ns
(m

1)

(c) Faulting with:

hi,j = hi,j × ||A||2 × 10−0.5

1 5 10 15 20 25
Iteration (Index) j→

1

5

10

15

20

25

←
Ite

ra
tio

n
(In

de
x)
i

No Fa
ult

ing

Iterations w.o. Faulting:8

Number of Outer Iterations with and without Faulting
(Pseudo Hessenberg Matrix H̄(i, j))

8

9

10

N
um

be
ro

fO
ut

er
Ite

ra
tio

ns
(m

1)
(d) Faulting with:

hi,j = hi,j × ||A||2 × 10−300

Figure 35 Number of outer iterations for a single fault during orthogonalization (hi,j) and for

various disturbances while solving a diagonal matrix with condition number 1425.

In figure 35 faulting with different types of errors is presented, it shows that faulting with

large perturbations (10150 and 1050) is critical on some positions of H̄(i, j). Furthermore faulting

with perturbations of 10−0.5 and 10−300 like in figure 35c and 35d is only critical on some specific

positions (H̄(1, 2), H̄(2, 3), H̄(3, 4), . . .). The worst overhead is 22 % (= 11
9) in the presence of a

single fault. In figure 35 are 8 outer iterations (m1) needed for the F(T)-GMRES without a fault.

The inner solver is initialized with zero values for vector wj(w0). The used matrix A for figure 35 is

built like in section 7.1 for problem 1, the relative residuum is below 10−9 for all computations.

Experimental Studies on FT-GMRES Page 93 of 226

9.2.3 Faulting on a matrix with high condition number - Inner solver initialized with zero

values (and with 50 iterations for the inner solver)

1 10 20 30 40 50
Iteration (Index) j→

1

10

20

30

40

50

←
Ite

ra
tio

n
(In

de
x)
i

No Fa
ult

ing

Iterations w.o. Faulting:5

Number of Outer Iterations with and without Faulting
(Pseudo Hessenberg Matrix H̄(i, j))

5

6

7

N
um

be
ro

fO
ut

er
Ite

ra
tio

ns
(m

1)
(a) Faulting with:

hi,j = hi,j × ||A||2 × 10150

1 10 20 30 40 50
Iteration (Index) j→

1

10

20

30

40

50

←
Ite

ra
tio

n
(In

de
x)
i

No Fa
ult

ing

Iterations w.o. Faulting:5

Number of Outer Iterations with and without Faulting
(Pseudo Hessenberg Matrix H̄(i, j))

5

6

7

N
um

be
ro

fO
ut

er
Ite

ra
tio

ns
(m

1)

(b) Faulting with:

hi,j = hi,j × ||A||2 × 1050

1 10 20 30 40 50
Iteration (Index) j→

1

10

20

30

40

50

←
Ite

ra
tio

n
(In

de
x)
i

No Fa
ult

ing

Iterations w.o. Faulting:5

Number of Outer Iterations with and without Faulting
(Pseudo Hessenberg Matrix H̄(i, j))

5

6

7

8

N
um

be
ro

fO
ut

er
Ite

ra
tio

ns
(m

1)

(c) Faulting with:

hi,j = hi,j × ||A||2 × 10−0.5

1 10 20 30 40 50
Iteration (Index) j→

1

10

20

30

40

50

←
Ite

ra
tio

n
(In

de
x)
i

No Fa
ult

ing

Iterations w.o. Faulting:5

Number of Outer Iterations with and without Faulting
(Pseudo Hessenberg Matrix H̄(i, j))

5

6

7

N
um

be
ro

fO
ut

er
Ite

ra
tio

ns
(m

1)
(d) Faulting with:

hi,j = hi,j × ||A||2 × 10−300

Figure 36 Number of outer iterations for a single fault during orthogonalization (hi,j) and for

various disturbances while solving a diagonal matrix with condition number 1425.

In figure 36 faulting with different types of errors is presented, it shows that faulting with

large perturbations (10150 and 1050) is critical on some positions of H̄(i, j). Furthermore faulting

with perturbations of 10−0.5 and 10−300 like in figure 36c and 36d is only critical on some specific

positions (H̄(1, 2), H̄(2, 3), H̄(3, 4), . . .). The worst overhead is 33 % (= 8
6) in the presence of a

single fault. In figure 36 are 5 outer iterations (m1) needed for the F(T)-GMRES without a fault.

The inner solver is initialized with zero values for vector wj(w0). The used matrix A for figure 36 is

built like in section 7.1 for problem 1, the relative residuum is below 10−9 for all computations.

Experimental Studies on FT-GMRES Page 94 of 226

9.2.4 Faulting on a matrix with very high condition number - Inner solver initialized with

zero values (and with 25 iterations for the inner solver)

1 5 10 15 20 25
Iteration (Index) j→

1

5

10

15

20

25

←
Ite

ra
tio

n
(In

de
x)
i

No Fa
ult

ing

Iterations w.o. Faulting:10

Number of Outer Iterations with and without Faulting
(Pseudo Hessenberg Matrix H̄(i, j))

10

11

12

N
um

be
ro

fO
ut

er
Ite

ra
tio

ns
(m

1)
(a) Faulting with:

hi,j = hi,j × ||A||2 × 10150

1 5 10 15 20 25
Iteration (Index) j→

1

5

10

15

20

25

←
Ite

ra
tio

n
(In

de
x)
i

No Fa
ult

ing

Iterations w.o. Faulting:10

Number of Outer Iterations with and without Faulting
(Pseudo Hessenberg Matrix H̄(i, j))

10

11

12

N
um

be
ro

fO
ut

er
Ite

ra
tio

ns
(m

1)

(b) Faulting with:

hi,j = hi,j × ||A||2 × 1050

1 5 10 15 20 25
Iteration (Index) j→

1

5

10

15

20

25

←
Ite

ra
tio

n
(In

de
x)
i

No Fa
ult

ing

Iterations w.o. Faulting:10

Number of Outer Iterations with and without Faulting
(Pseudo Hessenberg Matrix H̄(i, j))

10

11

12

N
um

be
ro

fO
ut

er
Ite

ra
tio

ns
(m

1)

(c) Faulting with:

hi,j = hi,j × ||A||2 × 10−0.5

1 5 10 15 20 25
Iteration (Index) j→

1

5

10

15

20

25

←
Ite

ra
tio

n
(In

de
x)
i

No Fa
ult

ing

Iterations w.o. Faulting:10

Number of Outer Iterations with and without Faulting
(Pseudo Hessenberg Matrix H̄(i, j))

10

11

12

N
um

be
ro

fO
ut

er
Ite

ra
tio

ns
(m

1)

(d) Faulting with:

hi,j = hi,j × ||A||2 × 10−300

Figure 37 Number of outer iterations for a single fault during orthogonalization (hi,j) and for

various disturbances while solving a diagonal matrix with condition number 14250.

In figure 37 faulting with different types of errors is presented, it shows that faulting with

large perturbations (10150 and 1050) is critical on some positions of H̄(i, j). Furthermore faulting

with perturbations of 10−0.5 and 10−300 like in figure 37c and 37d is only critical on some specific

positions (H̄(1, 2), H̄(2, 3), H̄(3, 4), . . .). The worst overhead is 9 % (= 12
11) in the presence of a

single fault. In figure 37 are 10 outer iterations (m1) needed for the F(T)-GMRES without a fault.

The inner solver is initialized with zero values for vector wj(w0). The used matrix A for figure 37 is

built like in section 7.1 for problem 1, the relative residuum is below 10−9 for all computations.

Experimental Studies on FT-GMRES Page 95 of 226

9.2.5 Faulting on a matrix with very high condition number - Inner solver initialized with

zero values (and with 50 iterations for the inner solver)

1 10 20 30 40 50
Iteration (Index) j→

1

10

20

30

40

50

←
Ite

ra
tio

n
(In

de
x)
i

No Fa
ult

ing

Iterations w.o. Faulting:7

Number of Outer Iterations with and without Faulting
(Pseudo Hessenberg Matrix H̄(i, j))

7

8

9

10

N
um

be
ro

fO
ut

er
Ite

ra
tio

ns
(m

1)
(a) Faulting with:

hi,j = hi,j × ||A||2 × 10150

1 10 20 30 40 50
Iteration (Index) j→

1

10

20

30

40

50

←
Ite

ra
tio

n
(In

de
x)
i

No Fa
ult

ing

Iterations w.o. Faulting:7

Number of Outer Iterations with and without Faulting
(Pseudo Hessenberg Matrix H̄(i, j))

7

8

9

N
um

be
ro

fO
ut

er
Ite

ra
tio

ns
(m

1)

(b) Faulting with:

hi,j = hi,j × ||A||2 × 1050

1 10 20 30 40 50
Iteration (Index) j→

1

10

20

30

40

50

←
Ite

ra
tio

n
(In

de
x)
i

No Fa
ult

ing

Iterations w.o. Faulting:7

Number of Outer Iterations with and without Faulting
(Pseudo Hessenberg Matrix H̄(i, j))

7

8

9

N
um

be
ro

fO
ut

er
Ite

ra
tio

ns
(m

1)

(c) Faulting with:

hi,j = hi,j × ||A||2 × 10−0.5

1 10 20 30 40 50
Iteration (Index) j→

1

10

20

30

40

50

←
Ite

ra
tio

n
(In

de
x)
i

No Fa
ult

ing

Iterations w.o. Faulting:7

Number of Outer Iterations with and without Faulting
(Pseudo Hessenberg Matrix H̄(i, j))

7

8

9

N
um

be
ro

fO
ut

er
Ite

ra
tio

ns
(m

1)

(d) Faulting with:

hi,j = hi,j × ||A||2 × 10−300

Figure 38 Number of outer iterations for a single fault during orthogonalization (hi,j) and for

various disturbances while solving a diagonal matrix with condition number 14250.

In figure 38 faulting with different types of errors is presented, it shows that faulting with

large perturbations (10150 and 1050) is critical on some positions of H̄(i, j). Furthermore faulting

with perturbations of 10−0.5 and 10−300 like in figure 38c and 38d is only critical on some specific

positions (H̄(7, 8), H̄(8, 9), H̄(10, 11), . . .). The worst overhead is 25 % (= 10
8) in the presence of a

single fault. In figure 38 are 7 outer iterations (m1) needed for the F(T)-GMRES without a fault.

The inner solver is initialized with zero values for vector wj(w0). The used matrix A for figure 38 is

built like in section 7.1 for problem 1, the relative residuum is below 10−9 for all computations.

Experimental Studies on FT-GMRES Page 96 of 226

9.3 Testing of all positions of the orthogonalization with multiple faults
In the case of multiple faults there are different possibilities but faulting can be still done on po-

sitions like in formula 106 for matrix H̄(i, j). The main contrast of single and multiple faults is

that multiple faults occur on different positions of the orthogonalization process for computing hi,j
(line 5 - 10 of algorithm 6) in the inner solver of the FT-GMRES (line 4 of algorithm 14) during

one execution. Only the number of outer iterations for single and multiple faults can be shown

at one position of matrix H̄(i, j). Therefore there must be some restrictions to this approach, like

faulting can be only applied along index i or index j which means if position H̄(i, j) is shown with

the number of outer iterations it also means that indexes along i or j are affected with the same

perturbation. Just for example if the number of outer iterations is shown on H̄(1, 2) like faulting

on h̄1,2 also all positions after i ≥ 1 are affected if faulting is applied with multiple faults along

index i (H̄i(i, j)). In contrast if faulting is applied along index j (H̄j(i, j)) all position after j ≥ 2 are

affected, inclusive the position H̄(i, j) or H̄j(i, j). In formula 108 and 109 where faulting is applied

along index i or index j, the first position always shows the number of outer iterations for multiple

faults. The number of outer iterations is shown on positions marked with ”XX” (= H̄j(i, j) or

H̄i(i, j)) where positions with ”X” are also affected in the case of one execution of the inner solver.

H̄j(i, j) = (H̄j(1, 2)) =

Ite
ra

tio
n

(In
d

e
x)
i→



× XX X X X X X X X

× × × × × × × ×
× × × × × × ×
× × × × × ×
× × × × ×
× × × ×

F × × ×
× ×
×



N
u

m
b

e
r

o
f

O
u

te
r

It
e
ra

ti
o
n

s

(F
T-

G
M

R
E

S
)

Iteration (Index) j →
(108)

Figure 39 Matrix H̄j(i, j) which visualizes where faulting is applied with multiple faults along

index j during the orthogonalization process and with the according number of outer iterations.

H̄i(i, j) = (H̄i(1, 2)) =

Ite
ra

tio
n

(In
d

e
x)
i→



× XX × × × × × × ×
X × × × × × × ×

× × × × × × ×
× × × × × ×
× × × × ×
× × × ×

F × × ×
× ×
×



N
u

m
b

e
r

o
f

O
u

te
r

It
e
ra

ti
o
n

s

(F
T-

G
M

R
E

S
)

Iteration (Index) j →
(109)

Figure 40 Matrix H̄i(i, j) which visualizes where faulting is applied with multiple faults along

index i during the orthogonalization process and with the according number of outer iterations.

For more experiments and informations about multiple faults in the FT-GMRES just see [70] but

for more experiments with un-symmetric problems in this work just go to section 9.11.

Experimental Studies on FT-GMRES Page 97 of 226

9.3.1 Faulting on a matrix with low condition number along index i - Inner solver initial-

ized with zero values (and with 25 iterations for the inner solver)

1 5 10 15 20 25
Iteration (Index) j→

1

5

10

15

20

25

←
Ite

ra
tio

n
(In

de
x)
i

No Fa
ult

ing

Iterations w.o. Faulting:4

Number of Outer Iterations with and without Faulting
(Pseudo Hessenberg Matrix H̄i(i, j))

4

5

N
um

be
ro

fO
ut

er
Ite

ra
tio

ns
(m

1)
(a) Faulting with:

hi,j = hi,j × ||A||2 × 1010

1 5 10 15 20 25
Iteration (Index) j→

1

5

10

15

20

25

←
Ite

ra
tio

n
(In

de
x)
i

No Fa
ult

ing

Iterations w.o. Faulting:4

Number of Outer Iterations with and without Faulting
(Pseudo Hessenberg Matrix H̄i(i, j))

4

5

N
um

be
ro

fO
ut

er
Ite

ra
tio

ns
(m

1)

(b) Faulting with:

hi,j = hi,j × ||A||2 × 1020

1 5 10 15 20 25
Iteration (Index) j→

1

5

10

15

20

25

←
Ite

ra
tio

n
(In

de
x)
i

No Fa
ult

ing

Iterations w.o. Faulting:4

Number of Outer Iterations with and without Faulting
(Pseudo Hessenberg Matrix H̄i(i, j))

4

5

N
um

be
ro

fO
ut

er
Ite

ra
tio

ns
(m

1)

(c) Faulting with:

hi,j = hi,j × ||A||2 × 10−0.5

1 5 10 15 20 25
Iteration (Index) j→

1

5

10

15

20

25

←
Ite

ra
tio

n
(In

de
x)
i

No Fa
ult

ing

Iterations w.o. Faulting:4

Number of Outer Iterations with and without Faulting
(Pseudo Hessenberg Matrix H̄i(i, j))

4

5

N
um

be
ro

fO
ut

er
Ite

ra
tio

ns
(m

1)

(d) Faulting with:

hi,j = hi,j × ||A||2 × 2

Figure 41 Number of outer iterations for multiple faults during orthogonalization (hi,j) along index

i and for various disturbances while solving a diagonal matrix with condition number 142.5.

In the case of multiple faults along index (iteration) i (H̄i(i, j)) in figure 41 there is no overhead

caused but only one additional iteration is needed which is mainly because of achieving the same

relative residuum (||r||2 = ||Ax − b||2/ ||b||2) as the F-GMRES after computation (10−9). At each

position along index i the same perturbation is induced (H̄i(i, j)). The inner solver is initialized

with zero values for vector wj(w0). The used matrix A is built like in section 7.1 for problem 1 (see

formula 102) with a condition number of 142.5 for all problems and trials. Faulting with multiple

faults along index i seems to be almost uncritical. The F(T)-GMRES takes 4 outer iterations (m1)

without a fault for the first computation.

Experimental Studies on FT-GMRES Page 98 of 226

9.3.2 Faulting on a matrix with low condition number along index j - Inner solver initial-

ized with zero values (and with 25 iterations for the inner solver)

1 5 10 15 20 25
Iteration (Index) j→

1

5

10

15

20

25

←
Ite

ra
tio

n
(In

de
x)
i

No Fa
ult

ing

Iterations w.o. Faulting:4

Number of Outer Iterations with and without Faulting
(Pseudo Hessenberg Matrix H̄(i, j))

4

5

6

7

8

N
um

be
ro

fO
ut

er
Ite

ra
tio

ns
(m

1)
(a) Faulting with:

hi,j = hi,j × ||A||2 × 1010

1 5 10 15 20 25
Iteration (Index) j→

1

5

10

15

20

25

←
Ite

ra
tio

n
(In

de
x)
i

No Fa
ult

ing

Iterations w.o. Faulting:4

Number of Outer Iterations with and without Faulting
(Pseudo Hessenberg Matrix H̄j(i, j))

4

5

6

7

8

9

N
um

be
ro

fO
ut

er
Ite

ra
tio

ns
(m

1)

(b) Faulting with:

hi,j = hi,j × ||A||2 × 1020

1 5 10 15 20 25
Iteration (Index) j→

1

5

10

15

20

25

←
Ite

ra
tio

n
(In

de
x)
i

No Fa
ult

ing

Iterations w.o. Faulting:4

Number of Outer Iterations with and without Faulting
(Pseudo Hessenberg Matrix H̄j(i, j))

4

5

6

7

N
um

be
ro

fO
ut

er
Ite

ra
tio

ns
(m

1)

(c) Faulting with:

hi,j = hi,j × ||A||2 × 10−0.5

1 5 10 15 20 25
Iteration (Index) j→

1

5

10

15

20

25

←
Ite

ra
tio

n
(In

de
x)
i

No Fa
ult

ing

Iterations w.o. Faulting:4

Number of Outer Iterations with and without Faulting
(Pseudo Hessenberg Matrix H̄j(i, j))

4

5

6

7

N
um

be
ro

fO
ut

er
Ite

ra
tio

ns
(m

1)

(d) Faulting with:

hi,j = hi,j × ||A||2 × 2

Figure 42 Number of outer iterations for multiple faults during orthogonalization (hi,j) along index

j and for various disturbances while solving a diagonal matrix with condition number 142.5.

In the case of multiple faults along index j (H̄j(i, j)) in figure 42 there is some overhead caused

but mainly at positions of H̄j(i = j, i = j) except in the case of large perturbations but there is no

contrast for perturbations of 10−0.5 and 2. The number of outer iterations is shown for each position

(hi,j) with multiple faults along index j (H̄j(i, j)). Figure 42b also shows that faulting along index

j with large perturbations in the inner solver of the FT-GMRES is critical. The worst overhead is

80 % (= 9
5) for multiple faults. The inner solver is initialized with zero values for vector wj(w0), the

used matrix A is built like in section 7.1 for problem 1 with a condition number (||.||2) of 142.5. The

F(T)-GMRES takes 4 outer iterations (m1) without a fault for the first computation.

Experimental Studies on FT-GMRES Page 99 of 226

9.3.3 Faulting on a matrix with high condition number along index i - Inner solver ini-

tialized with zero values (and with 25 iterations for the inner solver)

1 5 10 15 20 25
Iteration (Index) j→

1

5

10

15

20

25

←
Ite

ra
tio

n
(In

de
x)
i

No Fa
ult

ing

Iterations w.o. Faulting:8

Number of Outer Iterations with and without Faulting
(Pseudo Hessenberg Matrix H̄i(i, j))

8

9

N
um

be
ro

fO
ut

er
Ite

ra
tio

ns
(m

1)
(a) Faulting with:

hi,j = hi,j × ||A||2 × 1010

1 5 10 15 20 25
Iteration (Index) j→

1

5

10

15

20

25

←
Ite

ra
tio

n
(In

de
x)
i

No Fa
ult

ing

Iterations w.o. Faulting:8

Number of Outer Iterations with and without Faulting
(Pseudo Hessenberg Matrix H̄i(i, j))

8

9

N
um

be
ro

fO
ut

er
Ite

ra
tio

ns
(m

1)

(b) Faulting with:

hi,j = hi,j × ||A||2 × 1020

1 5 10 15 20 25
Iteration (Index) j→

1

5

10

15

20

25

←
Ite

ra
tio

n
(In

de
x)
i

No Fa
ult

ing

Iterations w.o. Faulting:8

Number of Outer Iterations with and without Faulting
(Pseudo Hessenberg Matrix H̄i(i, j))

8

9

N
um

be
ro

fO
ut

er
Ite

ra
tio

ns
(m

1)

(c) Faulting with:

hi,j = hi,j × ||A||2 × 10−0.5

1 5 10 15 20 25
Iteration (Index) j→

1

5

10

15

20

25

←
Ite

ra
tio

n
(In

de
x)
i

No Fa
ult

ing

Iterations w.o. Faulting:8

Number of Outer Iterations with and without Faulting
(Pseudo Hessenberg Matrix H̄i(i, j))

8

9

N
um

be
ro

fO
ut

er
Ite

ra
tio

ns
(m

1)

(d) Faulting with:

hi,j = hi,j × ||A||2 × 2

Figure 43 Number of outer iterations for multiple faults during orthogonalization (hi,j) along index

i and for various disturbances while solving a diagonal matrix with condition number 1425.

In the case of multiple faults along index (iteration) i (H̄i(i, j)) in figure 43 there is no overhead

caused but only one additional iteration is needed which is mainly because of achieving the same

relative residuum (||r||2 = ||Ax − b||2/ ||b||2) as the F-GMRES after computation (10−9). At each

position along index i the same perturbation is induced (H̄i(i, j)). The inner solver is initialized

with zero values for vector wj(w0). The used matrix A is built like in section 7.1 for problem 1 (see

formula 102) with a condition number of 1425 for all problems and trials. Faulting with multiple

faults along index i seems to be almost uncritical. The F(T)-GMRES takes 8 outer iterations (m1)

without a fault for the first computation.

Experimental Studies on FT-GMRES Page 100 of 226

9.3.4 Faulting on a matrix with high condition number along index j - Inner solver ini-

tialized with zero values (and with 25 iterations for the inner solver)

1 5 10 15 20 25
Iteration (Index) j→

1

5

10

15

20

25

←
Ite

ra
tio

n
(In

de
x)
i

No Fa
ult

ing

Iterations w.o. Faulting:8

Number of Outer Iterations with and without Faulting
(Pseudo Hessenberg Matrix H̄j(i, j))

8

9

10

11

12

13

N
um

be
ro

fO
ut

er
Ite

ra
tio

ns
(m

1)
(a) Faulting with:

hi,j = hi,j × ||A||2 × 1010

1 5 10 15 20 25
Iteration (Index) j→

1

5

10

15

20

25

←
Ite

ra
tio

n
(In

de
x)
i

No Fa
ult

ing

Iterations w.o. Faulting:8

Number of Outer Iterations with and without Faulting
(Pseudo Hessenberg Matrix H̄j(i, j))

8

9

10

11

12

13

N
um

be
ro

fO
ut

er
Ite

ra
tio

ns
(m

1)

(b) Faulting with:

hi,j = hi,j × ||A||2 × 1020

1 5 10 15 20 25
Iteration (Index) j→

1

5

10

15

20

25

←
Ite

ra
tio

n
(In

de
x)
i

No Fa
ult

ing

Iterations w.o. Faulting:8

Number of Outer Iterations with and without Faulting
(Pseudo Hessenberg Matrix H̄j(i, j))

8

9

10

N
um

be
ro

fO
ut

er
Ite

ra
tio

ns
(m

1)

(c) Faulting with:

hi,j = hi,j × ||A||2 × 10−0.5

1 5 10 15 20 25
Iteration (Index) j→

1

5

10

15

20

25

←
Ite

ra
tio

n
(In

de
x)
i

No Fa
ult

ing

Iterations w.o. Faulting:8

Number of Outer Iterations with and without Faulting
(Pseudo Hessenberg Matrix H̄j(i, j))

8

9

10

11

12

13

14

N
um

be
ro

fO
ut

er
Ite

ra
tio

ns
(m

1)

(d) Faulting with:

hi,j = hi,j × ||A||2 × 2

Figure 44 Number of outer iterations for multiple faults during orthogonalization (hi,j) along index

j and for various disturbances while solving a diagonal matrix with condition number 1425.

In the case of multiple faults along index j (H̄j(i, j)) in figure 44 there is some overhead caused

but mainly at positions of H̄j(i = j, i = j) except in the case of large perturbations but there is no

contrast for perturbations of 10−0.5 and 2. The number of outer iterations is shown for each position

with multiple faults along index j (H̄j(i, j)). Figure 44b also shows that faulting along index j with

large perturbations in the inner solver of the FT-GMRES is critical. The worst overhead is 50 %

(= 14
9) for multiple faults. The inner solver is initialized with zero values for vector wj(w0), the

used matrix A is built like in section 7.1 for problem 1 with a condition number (||.||2) of 1425. The

F(T)-GMRES takes 8 outer iterations (m1) without a fault for the first computation.

Experimental Studies on FT-GMRES Page 101 of 226

9.4 Comparison between the 2D Poisson and adder_dcop_63 problem
In this section two different matrices are compared, the first one is the 2D Poisson and second

one is the adder_dcop_63 matrix [10]. Both matrices have unequal properties like the condition

number (||.||2) shown in table 45 and both differ in the eigenvalue distribution (λ) presented in

table 5. There is also a complete comparison in figure 60 and 61 for the eigenvalue (λ) distribution

of the 2D Poisson and adder_dcop_63 matrix which is the main contrast between both matrices.

Properties 2D Poisson matrix

Number of rows 10000

Number of columns 10000

Nonzeros 49600

Structural full rank? yes

Structure symmetric

Type real

Positive definite? yes

Condition number (||.||2) 6.0107× 103

Properties adder_dcop_63 matrix

Number of rows 1813

Number of columns 1813

Nonzeros 11246

Structural full rank? yes

Structure un-symmetric

Type real

Positive definite? no

Condition number (||.||2) 5.6107× 1011

Figure 45 Sample matrices for comparison (2D Poisson and adder_dcop_63 matrix).

The aim of this section is to find out which property of matrix A makes faulting during the orthogo-

nalization process for computing hi,j in the inner solver of the FT-GMRES less harmful but perhaps

also in other parts. There are still two different scenarios applied in this section like faulting with

error type 1 or error type 2 similar as in section 8.1 and table 27. For both cases the residuals

(||r||2) of the outer solver are plotted but as well the approximation errors (||σj ||22) of the Hessen-

berg matrix Ĥ(i, j) in the inner solver of FT-GMRES which are nearly the same as the residuals.

The value ||σj ||22 can be computed with the help of the Givens rotation (shown in algorithm 5). In

section 9.12.2 (2D Poisson) and 9.12.5 (adder_dcop_63 matrix) there is shown which structure for

the Hessenberg matrix is mainly build for these two problems in this section.

The 2D Poisson matrix: The adder_dcop_63 matrix [10]:

Condition number (||.||2): 6.0107× 103 Condition number (||.||2): 5.6107× 1011

Greatest eigenvalue of matrix A: 7.9553 Greatest eigenvalue of matrix A: 1.1743

2nd greatest eigenvalue of Matrix A: 7.8888 2nd greatest eigenvalue of matrix A: 1.0014

Smallest eigenvalue of matrix A: 0.1112 Smallest eigenvalue of matrix A: 1.0014 ×10−12

Table 5 Some properties of the 2D Poisson and adder_dcop_63 matrix.

This approximation error ||σj ||22 is almost identical to the residuum ||rj ||2 for each iteration of j

but it reduces the number of operations a lot because computing the residuum ||rj ||2 will always

need a sparse multiplication (y = Ax). The value of ||σj ||22 is computed in line 14 of algorithm 5. The

approximation error (||σj ||22) and the residuum (||rj ||2) differ really less in terms of the magnitude

and convergence history in an error free run where the value of ||σj ||22 stagnates more in the case

of a fault which is then different from ||rj ||2. The value of ||σj ||22 can be also used to build a detector

to check for stagnating convergence and if there is a fault in the inner solver.

The outcome of these experiments in this section is that faulting during solving the adder_dcop_63

matrix has less influence on the number of outer iterations in comparison to the 2D Poisson matrix.

Especially faulting with perturbations of 10−300 in figure 55 has less effect in contrast to figure

53 where faulting is more crucial for more iterations of j except the very first iteration (h1,2). The

residual curves are also shown in figure 48 for the 2D Poisson and in figure 50 in the case of solving

the adder_dcop_63 matrix, this matrix has a larger condition number than the 2D Poisson problem.

Experimental Studies on FT-GMRES Page 102 of 226

9.4.1 Residuum curves of GMRES and F-GMRES for solving the 2D Poisson and adder_dcop_63

problem - Inner solver initialized with zero values

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
Number of Operations (Flops - analytical)

(Outer Solver)
×109

10−11
10−10
10−9
10−8
10−7
10−6
10−5
10−4
10−3
10−2
10−1

100
R

el
at

iv
e

R
es

id
uu

m
||A

x
−b
|| 2

||b
|| 2

Maximum allowable Residuum

GMRES
F-GMRES(25) with 25 Inner Iterations (m2)
F-GMRES(50) with 50 Inner Iterations (m2)
F-GMRES(75) with 75 Inner Iterations (m2)
F-GMRES(100) with 100 Inner Iterations (m2)
F-GMRES(125) with 125 Inner Iterations (m2)

Figure 46 Residuum curves for solving the 2D Poisson problem with the GMRES and F-GMRES

solver. The final relative residuum (||r||2 = ||Ax− b||2/||b||2) of all computations is below 10−9.

0 1 2 3 4 5
Number of Operations (Flops - analytical)

(Outer Solver)
×108

10−10
10−9
10−8
10−7
10−6
10−5
10−4
10−3
10−2
10−1

100

R
el

at
iv

e
R

es
id

uu
m
||A

x
−b
|| 2

||b
|| 2

Maximum allowable Residuum

GMRES
F-GMRES(25) with 25 Inner Iterations (m2)
F-GMRES(50) with 50 Inner Iterations (m2)
F-GMRES(75) with 75 Inner Iterations (m2)
F-GMRES(100) with 100 Inner Iterations (m2)
F-GMRES(125) with 125 Inner Iterations (m2)

Figure 47 Residuum curves for solving the adder_dcop_63 problem with the GMRES and F-GMRES

solver. The final relative residuum (||r||2 = ||Ax− b||2/||b||2) of all computations is below 10−9.

In figure 46 and 47 the 2D Poisson and adder_dcop_63 matrix are solved with the GMRES and F-

GMRES solver. In both figures different numbers of iterations are used for the inner solver (m2) of

the F-GMRES where the F-GMRES with 25 inner iterations is the fastest possibility in both figures.

Overall the F-GMRES solver is quite faster than the GMRES solver in both figures if the number

of operations is considered which means the F-GMRES helps to decrease the needed number of

operations. The number of operations for GMRES and F-GMRES are computed as in section 6.1.4.

The inner solver of the F-GMRES is initialized with zero values for vector wj(w0) in both figures.

Experimental Studies on FT-GMRES Page 103 of 226

9.4.2 Residuals and approximation errors for solving the 2D Poisson problem and fault-

ing with error type 1 - Inner solver initialized with zero values

0 2 4 6 8 10 12 14 16 18
Number of Outer Iteration j (m1)

10−10
10−8
10−6
10−4
10−2

100
102
104
106
108

1010
1012

R
e

la
tiv

e
R

e
si

d
u

u
m
||A

x
−
b|
| 2

||b
|| 2

Maximum allowable Residuum

Reference without Faulting and with Outer Iterations 10
Faulting at 1st Iteration j on i = 1 and with Outer Iterations 11

Faulting at 2nd Iteration j on i = 1 and with Outer Iterations 12

Faulting at 3rd Iteration j on i = 1 and with Outer Iterations 14

Faulting at 4rd Iteration j on i = 1 and with Outer Iterations 15

Faulting at 5th Iteration j on i = 1 and with Outer Iterations 14

Faulting at 13th Iteration j on i = 1 and with Outer Iterations 13

Faulting at 25th Iteration j on i = 1 and with Outer Iterations 11

(a) Residuum curves for faulting at the fifth execution of the inner solver

with error type 1 (hi,j = hi,j × ||A||2 × 10150).

0 5 10 15 20 25
Number of Inner Iteration j (m2)

10−2

10−1

100

A
p

p
ro

xi
m

a
tio

n
E

rr
o

r
||σ
||2 2

||b
|| 2

Reference without Faulting and with Outer Iterations 10
Faulting at 1st Iteration j on i = 1 (h1,1) and with Outer Iterations 11

Faulting at 2nd Iteration j on i = 1 (h1,2) and with Outer Iterations 12

Faulting at 3rd Iteration j on i = 1 (h1,3) and with Outer Iterations 14

Faulting at 4rd Iteration j on i = 1 (h1,4) and with Outer Iterations 15

Faulting at 5th Iteration j on i = 1 (h1,5) and with Outer Iterations 14

Faulting at 13th Iteration j on i = 1 (h1,13) and with Outer Iterations 13

Faulting at 25th Iteration j on i = 1 (h1,25) and with Outer Iterations 11

(b) Approximation errors for faulting at the fifth execution of the inner solver

with error type 1 (hi,j = hi,j × ||A||2 × 10150).

Figure 48 Residuum (outer solver) and the corresponding approximation (inner solver) curves

for solving the 2D Poisson matrix.

In figure 48 the residuals (||rj ||2) and approximation errors (||σj ||22) are plotted for solving the

2D Poisson matrix and faulting with error type 1. Figure 48b shows that the approximation error

respective residual stagnates for some positions of hi,j (h1,3, h1,5). The inner solver is initialized

with zeros for vector wj(w0) and the achieved residuum (||r||2 = ||Ax− b||2/||b||2) is below 10−9.

Experimental Studies on FT-GMRES Page 104 of 226

9.4.3 Residuals and approximation errors for solving the 2D Poisson problem and fault-

ing with error type 2 - Inner solver initialized with zero values

0 2 4 6 8 10 12 14 16 18
Number of Outer Iteration j (m1)

10−10
10−8
10−6
10−4
10−2

100
102
104
106
108

1010
1012

R
e

la
tiv

e
R

e
si

d
u

u
m
||A

x
−
b|
| 2

||b
|| 2

Maximum allowable Residuum

Reference without Faulting and with Outer Iterations 10
Faulting at 1st Iteration j on i = 1 and with Outer Iterations 11

Faulting at 2nd Iteration j on i = 1 and with Outer Iterations 11

Faulting at 3rd Iteration j on i = 1 and with Outer Iterations 10

Faulting at 4rd Iteration j on i = 1 and with Outer Iterations 10

Faulting at 5th Iteration j on i = 1 and with Outer Iterations 10

Faulting at 13th Iteration j on i = 1 and with Outer Iterations 10

Faulting at 25th Iteration j on i = 1 and with Outer Iterations 10

(a) Residuum curves for faulting at the fifth execution of the inner solver

with error type 2 (hi,j = hi,j × ||A||2 × 10−300).

0 5 10 15 20 25
Number of Inner Iteration j (m2)

10−2

10−1

100

A
p

p
ro

xi
m

a
tio

n
E

rr
o

r
||σ
||2 2

||b
|| 2

Reference without Faulting and with Outer Iterations 10
Faulting at 1st Iteration j on i = 1 (h1,1) and with Outer Iterations 11

Faulting at 2nd Iteration j on i = 1 (h1,2) and with Outer Iterations 11

Faulting at 3rd Iteration j on i = 1 (h1,3) and with Outer Iterations 10

Faulting at 4rd Iteration j on i = 1 (h1,4) and with Outer Iterations 10

Faulting at 5th Iteration j on i = 1 (h1,5) and with Outer Iterations 10

Faulting at 13th Iteration j on i = 1 (h1,13) and with Outer Iterations 10

Faulting at 25th Iteration j on i = 1 (h1,25) and with Outer Iterations 10

(b) Approximation errors for faulting at the fifth execution of the inner solver

with error type 2 (hi,j = hi,j × ||A||2 × 10−300).

Figure 49 Residuum (outer solver) and the corresponding approximation (inner solver) curves

for solving the 2D Poisson matrix.

In figure 49 the residuals (||rj ||2) and approximation errors (||σj ||22) are plotted for solving the

2D Poisson matrix and faulting with error type 2. Figure 49b shows that the approximation error

respective residual stagnates for a specific position of hi,j (h1,2). The inner solver is initialized with

zeros for vector wj(w0) and the achieved residuum (||r||2 = ||Ax− b||2/||b||2) is below 10−9.

Experimental Studies on FT-GMRES Page 105 of 226

9.4.4 Residuals and approximation errors for solving the adder_dcop_63 problem and

faulting with error type 1 - Inner solver initialized with zero values

0 5 10 15 20 25 30 35 40
Number of Outer Iteration j (m1)

10−10
10−9
10−8
10−7
10−6
10−5
10−4
10−3
10−2
10−1

100
101

R
e

la
tiv

e
R

e
si

d
u

u
m
||A

x
−
b|
| 2

||b
|| 2

Maximum allowable Residuum

Reference without Faulting and with Outer Iterations 32
Faulting at 1st Iteration j on i = 1 and with Outer Iterations 32

Faulting at 2nd Iteration j on i = 1 and with Outer Iterations 33

Faulting at 3rd Iteration j on i = 1 and with Outer Iterations 34

Faulting at 4rd Iteration j on i = 1 and with Outer Iterations 33

Faulting at 5th Iteration j on i = 1 and with Outer Iterations 33

Faulting at 13th Iteration j on i = 1 and with Outer Iterations 33

Faulting at 25th Iteration j on i = 1 and with Outer Iterations 32

(a) Residuum curves for faulting at the fifth execution of the inner solver

with error type 1 (hi,j = hi,j × ||A||2 × 10150).

0 5 10 15 20 25
Number of Inner Iteration j (m2)

10−1

100

A
p

p
ro

xi
m

a
tio

n
E

rr
o

r
||σ
||2 2

||b
|| 2

Reference without Faulting and with Outer Iterations 32
Faulting at 1st Iteration j on i = 1 (h1,1) and with Outer Iterations 32

Faulting at 2nd Iteration j on i = 1 (h1,2) and with Outer Iterations 33

Faulting at 3rd Iteration j on i = 1 (h1,3) and with Outer Iterations 34

Faulting at 4rd Iteration j on i = 1 (h1,4) and with Outer Iterations 33

Faulting at 5th Iteration j on i = 1 (h1,5) and with Outer Iterations 33

Faulting at 13th Iteration j on i = 1 (h1,13) and with Outer Iterations 33

Faulting at 25th Iteration j on i = 1 (h1,25) and with Outer Iterations 32

(b) Approximation errors for faulting at the fifth execution of the inner solver

with error type 1 (hi,j = hi,j × ||A||2 × 10150).

Figure 50 Residuum (outer solver) and the corresponding approximation (inner solver) curves

for solving the adder_dcop_63 matrix.

In figure 50 the residuals (||rj ||2) and approximation errors (||σj ||22) are plotted for solving the

adder_dcop_63 matrix and faulting with error type 1. Figure 50b shows that the approximation

error respective residual does not stagnate so much anymore for hi,j . The inner solver is initialized

with zeros for vector wj(w0) and the achieved residuum (||r||2 = ||Ax− b||2/||b||2) is below 10−9.

Experimental Studies on FT-GMRES Page 106 of 226

9.4.5 Residuals and approximation errors for solving the adder_dcop_63 problem and

faulting with error type 2 - Inner solver initialized with zero values

0 5 10 15 20 25 30 35 40
Number of Outer Iteration j (m1)

10−10
10−9
10−8
10−7
10−6
10−5
10−4
10−3
10−2
10−1

100
101

R
e

la
tiv

e
R

e
si

d
u

u
m
||A

x
−
b|
| 2

||b
|| 2

Maximum allowable Residuum

Reference without Faulting and with Outer Iterations 32
Faulting at 1st Iteration j on i = 1 and with Outer Iterations 32

Faulting at 2nd Iteration j on i = 1 and with Outer Iterations 32

Faulting at 3rd Iteration j on i = 1 and with Outer Iterations 32

Faulting at 4rd Iteration j on i = 1 and with Outer Iterations 32

Faulting at 5th Iteration j on i = 1 and with Outer Iterations 32

Faulting at 13th Iteration j on i = 1 and with Outer Iterations 32

Faulting at 25th Iteration j on i = 1 and with Outer Iterations 32

(a) Residuum curves for faulting at the fifth execution of the inner solver

with error type 2 (hi,j = hi,j × ||A||2 × 10−300).

0 5 10 15 20 25
Number of Inner Iteration j (m2)

10−1

100

A
p

p
ro

xi
m

a
tio

n
E

rr
o

r
||σ
||2 2

||b
|| 2

Reference without Faulting and with Outer Iterations 32
Faulting at 1st Iteration j on i = 1 (h1,1) and with Outer Iterations 32

Faulting at 2nd Iteration j on i = 1 (h1,2) and with Outer Iterations 32

Faulting at 3rd Iteration j on i = 1 (h1,3) and with Outer Iterations 32

Faulting at 4rd Iteration j on i = 1 (h1,4) and with Outer Iterations 32

Faulting at 5th Iteration j on i = 1 (h1,5) and with Outer Iterations 32

Faulting at 13th Iteration j on i = 1 (h1,13) and with Outer Iterations 32

Faulting at 25th Iteration j on i = 1 (h1,25) and with Outer Iterations 32

(b) Approximation errors for faulting at the fifth execution of the inner solver

with error type 2 (hi,j = hi,j × ||A||2 × 10−300).

Figure 51 Residuum (outer solver) and the corresponding approximation (inner solver) curves

for solving the adder_dcop_63 matrix.

In figure 51 the residuals (||rj ||2) and approximation errors (||σj ||22) are plotted for solving the

adder_dcop_63 matrix and faulting with error type 2. Figure 51b shows that the approximation

error respective residual does not stagnate so much anymore for hi,j . The inner solver is initialized

with zeros for vector wj(w0) and the achieved residuum (||r||2 = ||Ax− b||2/||b||2) is below 10−9.

Experimental Studies on FT-GMRES Page 107 of 226

9.4.6 Faulting on the first MGS-iteration during solving the 2D Poisson problem - Inner

solver initialized with zero values

0 50 100 150 200 250
Aggregate Inner Solve Iteration (j) that Faults (m2)

10

12

14

16

18

Nu
m

be
ro

fO
ut

er
Ite

ra
tio

ns
(m

1) Computations with Faulting of : hi,j = hi,j x ||A||2 x 10150

Outer Iterations without Faulting
Outer Solver - Check for Convergence

Figure 52 Faulting with single faults and error type 1 on the first MGS-iteration (hi=1,j) during

solving the 2D Poisson matrix for i = 1 and j = 1, . . . , 25. The relative residuum is below 10−9.

0 50 100 150 200 250
Aggregate Inner Solve Iteration (j) that Faults (m2)

9

10

11

12

13

14

15

Nu
m

be
ro

fO
ut

er
Ite

ra
tio

ns
(m

1) Computations with Faulting of : hi,j = hi,j x ||A||2 x 10−300

Outer Iterations without Faulting
Outer Solver - Check for Convergence

Figure 53 Faulting with single faults and error type 2 on the first MGS-iteration (hi=1,j) during

solving the 2D Poisson matrix for i = 1 and j = 1, . . . , 25. The relative residuum is below 10−9.

In figure 52 and figure 53 the 2D Poisson matrix is solved, both figures show a similar behavior

like in [4]. In this case the FT-GMRES takes 10 outer iterations whereas in the worst case 15 outer

iterations are observed for a single fault. The inner solver of the FT-GMRES is initialized with zero

values for vector wj(w0) and it does 25 iterations (j = 1, . . . , 25) for each execution. The relative

residuum (||r||2 = ||Ax− b||2/ ||b||2) is below 10−9 for all trials and computed solutions of x. Vertical

bars in figure 52 and 53 indicate the start of a new inner solve of the FT-GMRES.

Experimental Studies on FT-GMRES Page 108 of 226

9.4.7 Faulting on the first MGS-iteration during solving the adder_dcop_63 problem -

Inner solver initialized with zero values

0 100 200 300 400 500 600 700 800
Aggregate Inner Solve Iteration (j) that Faults (m2)

32

34

36

38

40

Nu
m

be
ro

fO
ut

er
Ite

ra
tio

ns
(m

1) Computations with Faulting of : hi,j = hi,j x ||A||2 x 10150

Outer Iterations without Faulting
Outer Solver - Check for Convergence

Figure 54 Faulting with single faults and error type 1 on the first MGS-iteration (hi=1,j) during

solving the adder_dcop_63 matrix for i = 1 and j = 1, . . . , 25. The relative residuum is below 10−9.

0 100 200 300 400 500 600 700 800
Aggregate Inner Solve Iteration (j) that Faults (m2)

31

32

33

34

35

36

37

Nu
m

be
ro

fO
ut

er
Ite

ra
tio

ns
(m

1) Computations with Faulting of : hi,j = hi,j x ||A||2 x 10−300

Outer Iterations without Faulting
Outer Solver - Check for Convergence

Figure 55 Faulting with single faults and error type 2 on the first MGS-iteration (hi=1,j) during

solving the adder_dcop_63 matrix for i = 1 and j = 1, . . . , 25. The relative residuum is below 10−9.

In figure 54 and figure 55 the adder_dcop_63 is solved, both figures show a different behavior as

in [4] (other matrix). In this case the FT-GMRES takes 32 outer iterations whereas in the worst case

38 outer iterations are observed for a single fault. The inner solver of the FT-GMRES is initialized

with zero values for vector wj(w0) and it does 25 iterations (j = 1, . . . , 25) for each execution. The

relative residuum (||r||2 = ||Ax− b||2/ ||b||2) is below 10−9 for all trials and computed solutions of x.

Vertical bars in figure 54 and 55 indicate the start of a new inner solve of the FT-GMRES.

Experimental Studies on FT-GMRES Page 109 of 226

9.4.8 Faulting on the Givens rotation during solving the 2D Poisson problem - Inner

solver initialized with zero values

0 50 100 150 200 250
Aggregate Inner Solve Iteration (j) that Faults (m2)

9

10

11

12

13

14

15

Nu
m

be
ro

fO
ut

er
Ite

ra
tio

ns
(m

1) Computations with Faulting of : rj = rj x ||A||2 x 10150

Outer Iterations without Faulting
Outer Solver - Check for Convergence

Figure 56 Faulting with single faults and error type 1 during applying the Givens rotation while

solving the 2D Poisson matrix with a disturbed radius r̂j (r̂j = rj × ||A||2 × 10150).

0 50 100 150 200 250
Aggregate Inner Solve Iteration (j) that Faults (m2)

9

10

11

12

13

14

15

Nu
m

be
ro

fO
ut

er
Ite

ra
tio

ns
(m

1) Computations with Faulting of : rj = rj x ||A||2 x 10−300

Outer Iterations without Faulting
Outer Solver - Check for Convergence

Figure 57 Faulting with single faults and error type 2 during applying the Givens rotation while

solving the 2D Poisson matrix with a disturbed radius r̂j (r̂j = rj × ||A||2 × 10−300).

In figure 56 and 57 faulting during applying the Givens rotation is shown. At each iteration of

j in the inner solver it is possible that there is a single fault during applying the Givens rotation.

Faulting is only done once at each position in the inner solver for 10 × 25 trials (outer × iterations

of the inner solver). The relative residuum (||r||2 = ||Ax − b||2/ ||b||2) is below 10−9 for all trials.

Vertical bars in figure 56 and 57 indicate the start of a new inner solve of the FT-GMRES.

Experimental Studies on FT-GMRES Page 110 of 226

9.4.9 Faulting on the Givens rotation during solving the adder_dcop_63 problem - Inner

solver initialized with zero values

0 100 200 300 400 500 600 700 800
Aggregate Inner Solve Iteration (j) that Faults (m2)

31

32

33

34

35

36

37

Nu
m

be
ro

fO
ut

er
Ite

ra
tio

ns
(m

1) Computations with Faulting of : rj = rj x ||A||2 x 10150

Outer Iterations without Faulting
Outer Solver - Check for Convergence

Figure 58 Faulting with single faults and error type 1 during applying the Givens rotation while

solving the adder_dcop_63 matrix with a disturbed radius r̂j (r̂j = rj × ||A||2 × 10150).

0 100 200 300 400 500 600 700 800
Aggregate Inner Solve Iteration (j) that Faults (m2)

31

32

33

34

35

36

37

38

Nu
m

be
ro

fO
ut

er
Ite

ra
tio

ns
(m

1) Computations with Faulting of : rj = rj x ||A||2 x 10−300

Outer Iterations without Faulting
Outer Solver - Check for Convergence

Figure 59 Faulting with single faults and error type 2 during applying the Givens rotation while

solving the adder_dcop_63 matrix with a disturbed radius r̂j (r̂j = rj × ||A||2 × 10−300).

In figure 58 and 59 faulting during applying the Givens rotation is shown. At each iteration of

j in the inner solver it is possible that there is a single fault during applying the Givens rotation.

Faulting is only done once at each position in the inner solver for 32 × 25 trials (outer × iterations

of the inner solver). The relative residuum (||r||2 = ||Ax − b||2/ ||b||2) is below 10−9 for all trials.

Vertical bars in figure 58 and 59 indicate the start of a new inner solve of the FT-GMRES.

Experimental Studies on FT-GMRES Page 111 of 226

9.4.10 Eigenvalue distribution of the 2D Poisson and adder_dcop _63 matrix

0 1 2 3 4 5 6 7 8
Real Part (λ) of Matrix A

−0.06

−0.04

−0.02

0.00

0.02

0.04

0.06
Im

ag
in

ar
y

Pa
rt

(λ
)o

fM
at

ri
x
A Eigenvalues

Figure 60 Eigenvalue distribution of the 2D Poisson matrix for a size of 100 × 100.

−1.5 −1.0 −0.5 0.0 0.5 1.0 1.5
Real Part (λ) of Matrix A

−2.0

−1.5

−1.0

−0.5

0.0

0.5

1.0

1.5

2.0

Im
ag

in
ar

y
Pa

rt
(λ

)o
fM

at
ri

x
A

×10−17

Eigenvalues

Figure 61 Eigenvalue distribution of the adder_dcop_63 matrix.

In figure 60 and 61 the eigenvalue distribution (λ) of both used problems is shown, in the case

of the adder_dcop_63 matrix the eigenvalues are more centered except some outliers which is an

indicator for super-lineare convergence like in [73] but in the case of the 2D Poisson matrix there

are only real eigenvalues and all are on the same line. Superlineare convergence leads to the

outcome that the used solver is able to solve the problem much faster than expected independent

of the condition number (||.||2). The used solver gets faster for each further iteration which leads

to the effect of lowering the total number of iterations even for high condition numbers (||.||2).

Experimental Studies on FT-GMRES Page 112 of 226

9.5 Faulting while solving the 2D Poisson and adder_dcop_63 problem
with/without ILU-preconditioning in the inner solver of the FT-GMRES

In this section the 2D Poisson matrix is solved with and without ILU -preconditioning [6] but as

well the adder_dcop_63 matrix taken from the sparse storage place for sparse matrices [10]. These

experiments are done to show the effect of faulting during the orthogonalization process for com-

puting hi,j (line 5 - 10 of algorithm 6) with and without preconditioning in the inner solver (line

4 of algorithm 14) of the FT-GMRES. Faulting is done with different kinds of perturbations like

in section 8.1 such that a disturbed h̄i,j is computed with h̄i,j = hi,j × ||A||2 × Eperturbed where

Eperturbed is the real perturbation during the orthogonalization process and can be chosen arbi-

trary. Preconditioning in this section is mainly done with the ILU -factorization [6] for speeding up

the computation for solving Ax = b with using the FT-GMRES solver.

How to apply ILU -preconditioning [6] for the inner solver of the F(T)-GMRES is shown in sec-

tion 5.2.10.4 which is mainly done for the standard GMRES solver but can be easily adapted for

the inner solver of the FT-GMRES (in line 4 of algorithm 14) as well as for the F-GMRES solver

(in line 4 of algorithm 11) because it doesn’t matter if the problem Ax = b should be solved or

qj = Mwj for the standard GMRES solver as the inner solver. Therefore there is no contrast if also

ILU -preconditioning is applied, in this case the standard matrix vector product vj+1 = Aqj has to

be replaced for ILU -preconditioning with vj+1 = L(\U\(Aqj)) where L and U are the factorized

matrices of matrix A such that the product of LU is approximately A (LU ≈ A). The relative error

(ErrorILU) of this factorization is defined with ErrorILU = ||LU −A||2/||A2||2 where L and U are a

lower (L) and upper (U) tridiagonal matrix.

The most important data about the 2D Poisson matrix are shown in table 45 where also the

adder_dcop_63 matrix is specified for comparison both used matrices are unequal in almost all

properties. Something similar is already done in section 8.2 where the number of outer iterations

(m1) in the presence of a single fault is visualized for some specific positions like in section 9.2 to

show the number of outer iterations (m1) for each position of the orthogonalization process (hi,j)

in the case of a single fault for the inner solver of the FT-GMRES.

The main reason why the 2D Poisson matrix is used in this section is because in many other

settings this matrix is also used and it is not really reasonable to apply ILU -factorization for a

diagonal matrix because the used method would only divide through the absolute greatest element

of it, this approach is also called diagonal scaling. So using ILU -preconditioning makes no really

sense for diagonal matrices especially for observing the overhead in the presence of a single fault

such that nothing really new can be observed. It is quite easy to apply preconditioning for a

diagonal matrix just by dividing all values of the used matrix through the absolute greatest element

of it such that all values are less or equal than one. This is not the case for the 2D Poisson matrix

because there must be done some additional operations because of factorization to get an upper

(U) and lower (L) matrix. The error of factorization3 (ErrorILU) is chosen as great as possible

because most work should be still done by the inner solver of the F(T)-GMRES.

In figure 65 solving the 2D Poisson problem is shown without ILU -preconditioning whereas

in figure 67 the same problem is shown with an error of ErrorILU 3 ≈ 10−1. Applying ILU -

preconditioning has some positive influence on the observed overhead but especially on the number

of outer iterations in the presence of a single fault. It doesn’t mean that ILU -preconditioning will

always decrease the influence of faulting in the inner solver but the effect of faulting on average in

the case of solving the 2D Poisson matrix can be decreased over all runs and positions of hi,j .

3ErrorILU = ||LU −A||2/||A2||2

Experimental Studies on FT-GMRES Page 113 of 226

9.5.1 Workload distribution of F-GMRES with ILU-preconditioning (2D Poisson matrix)

0 10 20 30 40 50 60
Number of Outer Iterations (m1)

100

101

102

103

104

105

106

107

108

109

1010
W

or
klo

ad
s(

Fl
op

s)
of

th
e

In
ne

ra
nd

Ou
te

rS
olv

er

Outer Solver (m1)
25 Iterations (m2) for the Inner Solver
50 Iterations (m2) for the Inner Solver
75 Iterations (m2) for the Inner Solver
25 Iterations (m2) for the Inner Solver (with Preconditioning)
50 Iterations (m2) for the Inner Solver (with Preconditioning)
75 Iterations (m2) for the Inner Solver (with Preconditioning)

Figure 62 Workloads for the inner and outer solver of the F-GMRES with and without ILU -

preconditioning in the case of solving the 2D Poisson matrix.

0 10 20 30 40 50 60
Number of Outer Iterations (m1)

101

102

103

104

105

Ra
tio

of
W

or
klo

ad
s(

=
Fl

op
so

fI
nn

er
So

lve
r

Fl
op

so
fO

ut
er

So
lve

r)

25 Iterations (m2) for the Inner Solver
50 Iterations (m2) for the Inner Solver
75 Iterations (m2) for the Inner Solver
25 Iterations (m2) for the Inner Solver (with Preconditioning)
50 Iterations (m2) for the Inner Solver (with Preconditioning)
75 Iterations (m2) for the Inner Solver (with Preconditioning)

Figure 63 Ratio of workloads of the F-GMRES with and without ILU -preconditioning in the case

of solving the 2D Poisson matrix.

In figure 63 the ratio of workloads between the inner and outer solver of the F-GMRES is shown

with additional operations for ILU -preconditioning in the case of solving the 2D Poisson matrix

(see section 9.4). In figure 62 the according flops for different numbers of iterations of the inner

solver are shown like in section 6.1.9, the number of flops for the GMRES solver (see section 6.1.4)

can be computed with FlopsGMRES(m,n,A) where m is the number of iterations, nnz(A) as the

number of non-zero elements and n for the size of matrix A. For the F-GMRES the total workload

without preconditioning is given by FlopsF−GMRES(m1,m2, k, A) = m1 FlopsGMRES(m2, n,A) +

FlopsGMRES(m1, n,A) with m1 for the number of outer iterations. In the worst case there are

additional 2m2n
2 [47] operations for the inner solver with ILU -preconditioning. For a sparse matrix

(2D Poisson) which is also a blocked-tridiagonal matrix forward and backward substitution can be

estimated with 3lk2 flops [74][75] where k is just the block size such that n = lk (2D Poisson:

n = k2) as like for a band matrix with 2k(k+ 1)l operations which is more efficient in terms of flops.

Therefore the ratio of flops for the inner and outer solver is m1 FlopsGMRES(m2,n,A)
FlopsGMRES(m1,n,A) ≈ m2

2+m2k(k+1)l
m1

.

Experimental Studies on FT-GMRES Page 114 of 226

9.5.2 Residuum curves of GMRES and Flexible GMRES for solving the 2D Poisson matrix

with/without ILU-preconditioning and different initializations for the inner solver

0.0 0.2 0.4 0.6 0.8 1.0
Number of Operations (Flops - analytical) ×109

10−12
10−10
10−8
10−6
10−4
10−2

100
102
104
106
108

1010
R

el
at

ive
R

es
id

uu
m
||A

x−
b||

2

||b
|| 2

Maximum allowable Residuum

Full GMRES
F-GMRES(25) with 25 Inner Iterations (m2) without Preconditioning
F-GMRES(50) with 50 Inner Iterations (m2) without Preconditioning
F-GMRES(75) with 75 Inner Iterations (m2) without Preconditioning
F-GMRES(25) with 25 Inner Iterations (m2) and Preconditioning
F-GMRES(50) with 50 Inner Iterations (m2) and Preconditioning
F-GMRES(75) with 75 Inner Iterations (m2) and Preconditioning

(a) Residuum curves (outer solver) for solving the 2D Poisson problem with and without

ILU -preconditioning, the inner solver of the F-GMRES is initialized with random values for vector wj(w0).

0 1 2 3 4 5 6 7
Number of Operations (Flops - analytical) ×108

10−11

10−9

10−7

10−5

10−3

10−1

101

103

105

107

109

R
el

at
ive

R
es

id
uu

m
||A

x−
b||

2

||b
|| 2

Maximum allowable Residuum

Full GMRES
F-GMRES(25) with 25 Inner Iterations (m2) without Preconditioning
F-GMRES(50) with 50 Inner Iterations (m2) without Preconditioning
F-GMRES(75) with 75 Inner Iterations (m2) without Preconditioning
F-GMRES(25) with 25 Inner Iterations (m2) and Preconditioning
F-GMRES(50) with 50 Inner Iterations (m2) and Preconditioning
F-GMRES(75) with 75 Inner Iterations (m2) and Preconditioning

(b) Residuum curves (outer solver) for solving the 2D Poisson problem with and without

ILU -preconditioning, the inner solver of the F-GMRES is initialized with zero values for vector wj(w0).

Figure 64 Residuum curves (outer solver) for solving the 2D Poisson problem with and without

ILU -preconditioning and different initializations for the inner solver (vector w0) of the F-GMRES.

In figure 64 the according relative residuals (||r||2) are plotted against the number of flops for

the F-GMRES solver with different numbers of iterations for the inner solver (m2). The number

of flops is estimated approximately for all executions of the F-GMRES, for the needed number of

iterations of the inner and outer solver as in section 6.1.4 to converge to the relative residuum

of 10−9. The error of factorization (ErrorILU 3) for matrix A with ILU -preconditioning is chosen

below 10−1 as in figure 68 in the case of the 2D Poisson matrix. The according number of flops for

ILU -preconditioning is also taken into account as in section 9.5.1 which is shown in figure 64. The

number of flops for the F-GMRES solver with ILU -preconditioning is about 70 % more in contrast

to without preconditioning for the standard solver in figure 64b to achieve the same residuum.

Experimental Studies on FT-GMRES Page 115 of 226

9.5.3 Faulting with different kinds of faults and without ILU-preconditioning during solv-

ing the 2D Poisson problem - Inner solver initialized with random values

1 5 10 15 20 25
Iteration (Index) j→

1

5

10

15

20

25

←
Ite

ra
tio

n
(I

nd
ex

)
i

No Fa
ult

ing

Iterations w.o. Faulting:31

Number of Outer Iterations with and without Faulting
(Pseudo Hessenberg Matrix H̄(i, j))

31

32

33

34

35

36

37

38

39

N
um

be
r

of
O

ut
er

Ite
ra

tio
ns

(m
1)

(a) Faulting without ILU - preconditioning

and: hi,j = hi,j × ||A||2 × 10150

1 5 10 15 20 25
Iteration (Index) j→

1

5

10

15

20

25

←
Ite

ra
tio

n
(I

nd
ex

)
i

No Fa
ult

ing

Iterations w.o. Faulting:31

Number of Outer Iterations with and without Faulting
(Pseudo Hessenberg Matrix H̄(i, j))

31

32

33

34

35

36

37

38

39

40

41

N
um

be
r

of
O

ut
er

Ite
ra

tio
ns

(m
1)

(b) Faulting without ILU - precondition-

ing and: hi,j = hi,j × ||A||2 × 1050

1 5 10 15 20 25
Iteration (Index) j→

1

5

10

15

20

25

←
Ite

ra
tio

n
(I

nd
ex

)
i

No Fa
ult

ing

Iterations w.o. Faulting:31

Number of Outer Iterations with and without Faulting
(Pseudo Hessenberg Matrix H̄(i, j))

31

32

33

34

35

36

37

38

39

40

N
um

be
r

of
O

ut
er

Ite
ra

tio
ns

(m
1)

(c) Faulting without ILU - preconditioning

and: hi,j = hi,j × ||A||2 × 1010

1 5 10 15 20 25
Iteration (Index) j→

1

5

10

15

20

25

←
Ite

ra
tio

n
(I

nd
ex

)
i

No Fa
ult

ing

Iterations w.o. Faulting:31

Number of Outer Iterations with and without Faulting
(Pseudo Hessenberg Matrix H̄(i, j))

31

32

33

34

35

36

37

38

39

N
um

be
r

of
O

ut
er

Ite
ra

tio
ns

(m
1)

(d) Faulting without ILU - precondition-

ing and: hi,j = hi,j × ||A||2 × 1

Figure 65 Number of outer iterations for a single fault on a specific position during orthogonal-

ization (hi,j) without ILU -preconditioning while solving the 2D Poisson matrix.

In figure 65 the 2D Poisson problem is solved. For the first trial in figure 65 it takes 31 outer

iterations (m1) for the F-GMRES without faulting whereas 25 iterations (m2) are set for the inner

solver. Faulting with large perturbations (10150, 1050) is more critical for all positions (hi,j) than

faulting with perturbations of 1010. Figure 65c and 65d show that smaller perturbations are less

problematic for all positions. The worst overhead is 28 % (41/32) because of the highest number of

outer iterations in the presence of a single fault. The relative residuum is below 10−9 for all trials

and computations.

Experimental Studies on FT-GMRES Page 116 of 226

9.5.4 Faulting with different kinds of faults and without ILU-preconditioning during solv-

ing the 2D Poisson problem - Inner solver initialized with zero values

1 5 10 15 20 25
Iteration (Index) j→

1

5

10

15

20

25

←
Ite

ra
tio

n
(I

nd
ex

)
i

No Fa
ult

ing

Iterations w.o. Faulting:10

Number of Outer Iterations with and without Faulting
(Pseudo Hessenberg Matrix H̄(i, j))

10

11

12

13

14

15

N
um

be
r

of
O

ut
er

Ite
ra

tio
ns

(m
1)

(a) Faulting without ILU - preconditioning

and: hi,j = hi,j × ||A||2 × 10150

1 5 10 15 20 25
Iteration (Index) j→

1

5

10

15

20

25

←
Ite

ra
tio

n
(I

nd
ex

)
i

No Fa
ult

ing

Iterations w.o. Faulting:10

Number of Outer Iterations with and without Faulting
(Pseudo Hessenberg Matrix H̄(i, j))

10

11

12

13

14

15

N
um

be
r

of
O

ut
er

Ite
ra

tio
ns

(m
1)

(b) Faulting without ILU - precondition-

ing and: hi,j = hi,j × ||A||2 × 1050

1 5 10 15 20 25
Iteration (Index) j→

1

5

10

15

20

25

←
Ite

ra
tio

n
(I

nd
ex

)
i

No Fa
ult

ing

Iterations w.o. Faulting:10

Number of Outer Iterations with and without Faulting
(Pseudo Hessenberg Matrix H̄(i, j))

10

11

12

13

N
um

be
r

of
O

ut
er

Ite
ra

tio
ns

(m
1)

(c) Faulting without ILU - preconditioning

and: hi,j = hi,j × ||A||2 × 1010

1 5 10 15 20 25
Iteration (Index) j→

1

5

10

15

20

25

←
Ite

ra
tio

n
(I

nd
ex

)
i

No Fa
ult

ing

Iterations w.o. Faulting:10

Number of Outer Iterations with and without Faulting
(Pseudo Hessenberg Matrix H̄(i, j))

10

11

12

N
um

be
r

of
O

ut
er

Ite
ra

tio
ns

(m
1)

(d) Faulting without ILU - precondition-

ing and: hi,j = hi,j × ||A||2 × 1

Figure 66 Number of outer iterations for a single fault on a specific position during orthogonal-

ization (hi,j) without ILU -preconditioning while solving the 2D Poisson matrix.

In figure 66 the 2D Poisson problem is solved. For the first trial in figure 66 it takes 10 outer

iterations (m1) for the F-GMRES without faulting whereas 25 iterations (m2) are set for the inner

solver. Faulting with large perturbations (10150, 1050) is more critical for all positions (hi,j) than

faulting with perturbations of 1010. Figure 66c and 66d show that smaller perturbations are less

problematic for all positions. The worst overhead is 36 % (15/11) because of the highest number of

outer iterations in the presence of a single fault. The relative residuum is below 10−9 for all trials

and computations.

Experimental Studies on FT-GMRES Page 117 of 226

9.5.5 Faulting with different kinds of faults and ILU-preconditioning during solving the

2D Poisson problem - Inner solver initialized with random values

1 5 10 15 20 25
Iteration (Index) j→

1

5

10

15

20

25

←
Ite

ra
tio

n
(I

nd
ex

)
i

No Fa
ult

ing

Iterations w.o. Faulting:8

Number of Outer Iterations with and without Faulting
(Pseudo Hessenberg Matrix H̄(i, j))

8

9

10

N
um

be
r

of
O

ut
er

Ite
ra

tio
ns

(m
1)

(a) Faulting with ILU - preconditioning

and: hi,j = hi,j × ||A||2 × 10150

1 5 10 15 20 25
Iteration (Index) j→

1

5

10

15

20

25

←
Ite

ra
tio

n
(I

nd
ex

)
i

No Fa
ult

ing

Iterations w.o. Faulting:8

Number of Outer Iterations with and without Faulting
(Pseudo Hessenberg Matrix H̄(i, j))

8

9

10

11

N
um

be
r

of
O

ut
er

Ite
ra

tio
ns

(m
1)

(b) Faulting with ILU - preconditioning

and: hi,j = hi,j × ||A||2 × 1050

1 5 10 15 20 25
Iteration (Index) j→

1

5

10

15

20

25

←
Ite

ra
tio

n
(I

nd
ex

)
i

No Fa
ult

ing

Iterations w.o. Faulting:8

Number of Outer Iterations with and without Faulting
(Pseudo Hessenberg Matrix H̄(i, j))

8

9

10

11

N
um

be
r

of
O

ut
er

Ite
ra

tio
ns

(m
1)

(c) Faulting with ILU - preconditioning

and: hi,j = hi,j × ||A||2 × 1010

1 5 10 15 20 25
Iteration (Index) j→

1

5

10

15

20

25

←
Ite

ra
tio

n
(I

nd
ex

)
i

No Fa
ult

ing

Iterations w.o. Faulting:8

Number of Outer Iterations with and without Faulting
(Pseudo Hessenberg Matrix H̄(i, j))

8

9

10

11

12

N
um

be
r

of
O

ut
er

Ite
ra

tio
ns

(m
1)

(d) Faulting with ILU - preconditioning

and: hi,j = hi,j × ||A||2 × 1

Figure 67 Number of outer iterations for a single fault on a specific position during orthogonaliza-

tion (hi,j) with ILU -preconditioning while solving the 2D Poisson matrix (andErrorILU 3 ≈ 9×10−2).

In figure 67 the 2D Poisson problem is solved with ILU -preconditioning. For the first trial in

figure 67 it takes 8 outer iterations (m1) for the F-GMRES without faulting whereas 25 iterations

(m2) are set for the inner solver. The worst overhead is 33 % (12/9) since in the worst case it

takes three additional iterations in the presence of a single fault. The advantage of using ILU -

preconditioning comes mainly by reducing the area where additional iterations are needed because

of a single fault such that there is a slight improvement. The inner solver of the F(T)-GMRES builds

an upper Hessenberg matrix as in formula 104. The relative residuum is below 10−9 for all trials.

Experimental Studies on FT-GMRES Page 118 of 226

9.5.6 Faulting with different kinds of faults and ILU-preconditioning during solving the

2D Poisson problem - Inner solver initialized with zero values

1 5 10 15 20 25
Iteration (Index) j→

1

5

10

15

20

25

←
Ite

ra
tio

n
(I

nd
ex

)
i

No Fa
ult

ing

Iterations w.o. Faulting:5

Number of Outer Iterations with and without Faulting
(Pseudo Hessenberg Matrix H̄(i, j))

5

6

7

N
um

be
r

of
O

ut
er

Ite
ra

tio
ns

(m
1)

(a) Faulting with ILU - preconditioning

and: hi,j = hi,j × ||A||2 × 10150

1 5 10 15 20 25
Iteration (Index) j→

1

5

10

15

20

25

←
Ite

ra
tio

n
(I

nd
ex

)
i

No Fa
ult

ing

Iterations w.o. Faulting:5

Number of Outer Iterations with and without Faulting
(Pseudo Hessenberg Matrix H̄(i, j))

5

6

7

N
um

be
r

of
O

ut
er

Ite
ra

tio
ns

(m
1)

(b) Faulting with ILU - preconditioning

and: hi,j = hi,j × ||A||2 × 1050

1 5 10 15 20 25
Iteration (Index) j→

1

5

10

15

20

25

←
Ite

ra
tio

n
(I

nd
ex

)
i

No Fa
ult

ing

Iterations w.o. Faulting:5

Number of Outer Iterations with and without Faulting
(Pseudo Hessenberg Matrix H̄(i, j))

5

6

7

N
um

be
r

of
O

ut
er

Ite
ra

tio
ns

(m
1)

(c) Faulting with ILU - preconditioning

and: hi,j = hi,j × ||A||2 × 1010

1 5 10 15 20 25
Iteration (Index) j→

1

5

10

15

20

25

←
Ite

ra
tio

n
(I

nd
ex

)
i

No Fa
ult

ing

Iterations w.o. Faulting:5

Number of Outer Iterations with and without Faulting
(Pseudo Hessenberg Matrix H̄(i, j))

5

6

7

N
um

be
r

of
O

ut
er

Ite
ra

tio
ns

(m
1)

(d) Faulting with ILU - preconditioning

and: hi,j = hi,j × ||A||2 × 1

Figure 68 Number of outer iterations for a single fault on a specific position during orthogonaliza-

tion (hi,j) with ILU -preconditioning while solving the 2D Poisson matrix (andErrorILU 3 ≈ 9×10−2).

In figure 68 the 2D Poisson problem is solved with ILU -preconditioning. For the first trial in fig-

ure 68 it takes 5 outer iterations (m1) for the F-GMRES without faulting whereas 25 iterations (m2)

are set for the inner solver. The worst overhead is 16 % (7/6) since in most cases it takes only one

additional iteration in the presence of a single fault. The advantage of using ILU -preconditioning

comes mainly by reducing the area where additional iterations are needed. There is an evident

reduce of additional iterations. The inner solver is initialized with zero values, it builds an upper

Hessenberg matrix as in formular 104. The relative residuum is below 10−9 for all computations.

Experimental Studies on FT-GMRES Page 119 of 226

9.5.7 Faulting with different kinds of faults and without ILU-preconditioning during solv-

ing the adder_dcop_63 problem - Inner solver initialized with random values

1 5 10 15 20 25
Iteration (Index) j→

1

5

10

15

20

25

←
Ite

ra
tio

n
(I

nd
ex

)
i

No Fa
ult

ing

Iterations w.o. Faulting:61

Number of Outer Iterations with and without Faulting
(Pseudo Hessenberg Matrix H̄(i, j))

61

67

73

79

85

91

97

103

109

N
um

be
r

of
O

ut
er

Ite
ra

tio
ns

(m
1)

(a) Faulting without ILU - preconditioning

and: hi,j = hi,j × ||A||2 × 10150

1 5 10 15 20 25
Iteration (Index) j→

1

5

10

15

20

25

←
Ite

ra
tio

n
(I

nd
ex

)
i

No Fa
ult

ing

Iterations w.o. Faulting:61

Number of Outer Iterations with and without Faulting
(Pseudo Hessenberg Matrix H̄(i, j))

61

66

71

76

81

86

91

96

101

106

N
um

be
r

of
O

ut
er

Ite
ra

tio
ns

(m
1)

(b) Faulting without ILU - precondition-

ing and: hi,j = hi,j × ||A||2 × 1050

1 5 10 15 20 25
Iteration (Index) j→

1

5

10

15

20

25

←
Ite

ra
tio

n
(I

nd
ex

)
i

No Fa
ult

ing

Iterations w.o. Faulting:61

Number of Outer Iterations with and without Faulting
(Pseudo Hessenberg Matrix H̄(i, j))

61

63

65

67

N
um

be
r

of
O

ut
er

Ite
ra

tio
ns

(m
1)

(c) Faulting without ILU - preconditioning

and: hi,j = hi,j × ||A||2 × 1010

1 5 10 15 20 25
Iteration (Index) j→

1

5

10

15

20

25

←
Ite

ra
tio

n
(I

nd
ex

)
i

No Fa
ult

ing

Iterations w.o. Faulting:61

Number of Outer Iterations with and without Faulting
(Pseudo Hessenberg Matrix H̄(i, j))

61

63

65

67

69

71

73

75

77

79

81

83

N
um

be
r

of
O

ut
er

Ite
ra

tio
ns

(m
1)

(d) Faulting without ILU - precondition-

ing and: hi,j = hi,j × ||A||2 × 1

Figure 69 Number of outer iterations for a single fault on a specific position during orthogonal-

ization (hi,j) without ILU -preconditioning while solving the adder_dcop_63 matrix.

In figure 69 the adder_dcop_63 problem is solved where large perturbations (10150 and 1050)

are still a problem but the space is much more smaller where faulting is more critical than faulting

during solving the 2D Poisson matrix. For this problem it takes 61 outer iterations (m1) and 25 (m2)

for the inner solver without faulting of the F-GMRES, for the first trial and computation. The worst

caused overhead is 76 % (109/62) which is high but only for single positions (hi,j). The relative

residuum is below 10−9 for all trials and computations.

Experimental Studies on FT-GMRES Page 120 of 226

9.5.8 Faulting with different kinds of faults and without ILU-preconditioning during solv-

ing the adder_dcop_63 problem - Inner solver initialized with zero values

1 5 10 15 20 25
Iteration (Index) j→

1

5

10

15

20

25

←
Ite

ra
tio

n
(I

nd
ex

)
i

No Fa
ult

ing

Iterations w.o. Faulting:32

Number of Outer Iterations with and without Faulting
(Pseudo Hessenberg Matrix H̄(i, j))

32

33

34

35

36

37

38

N
um

be
r

of
O

ut
er

Ite
ra

tio
ns

(m
1)

(a) Faulting without ILU - preconditioning

and: hi,j = hi,j × ||A||2 × 10150

1 5 10 15 20 25
Iteration (Index) j→

1

5

10

15

20

25

←
Ite

ra
tio

n
(I

nd
ex

)
i

No Fa
ult

ing

Iterations w.o. Faulting:32

Number of Outer Iterations with and without Faulting
(Pseudo Hessenberg Matrix H̄(i, j))

32

33

34

35

36

37

38

N
um

be
r

of
O

ut
er

Ite
ra

tio
ns

(m
1)

(b) Faulting without ILU - precondition-

ing and: hi,j = hi,j × ||A||2 × 1050

1 5 10 15 20 25
Iteration (Index) j→

1

5

10

15

20

25

←
Ite

ra
tio

n
(I

nd
ex

)
i

No Fa
ult

ing

Iterations w.o. Faulting:32

Number of Outer Iterations with and without Faulting
(Pseudo Hessenberg Matrix H̄(i, j))

32

33

34

35

N
um

be
r

of
O

ut
er

Ite
ra

tio
ns

(m
1)

(c) Faulting without ILU - preconditioning

and: hi,j = hi,j × ||A||2 × 1010

1 5 10 15 20 25
Iteration (Index) j→

1

5

10

15

20

25

←
Ite

ra
tio

n
(I

nd
ex

)
i

No Fa
ult

ing

Iterations w.o. Faulting:32

Number of Outer Iterations with and without Faulting
(Pseudo Hessenberg Matrix H̄(i, j))

32

33

34

N
um

be
r

of
O

ut
er

Ite
ra

tio
ns

(m
1)

(d) Faulting without ILU - precondition-

ing and: hi,j = hi,j × ||A||2 × 1

Figure 70 Number of outer iterations for a single fault on a specific position during orthogonal-

ization (hi,j) without ILU -preconditioning while solving the adder_dcop_63 matrix.

In figure 70 the adder_dcop_63 problem is solved where large perturbations (10150 and 1050) are

still a problem. The worst overhead for a single fault is given by 15 % (38/33) which is really less in

comparison to figure 69. In figure 70c and 70d faulting is a problem on some specific positions (hi,j)

which means that smaller perturbations lead to some overhead like with faulting of 1010. Solving

this problem takes 32 outer (m1) and 25 inner iterations (m2) for the F-GMRES solver, for the first

trial and computation without a fault, which is the half as in figure 69. The relative residuum is

below 10−9 for all computations and trials.

Experimental Studies on FT-GMRES Page 121 of 226

9.5.9 Faulting with different kinds of faults and ILU-preconditioning during solving the

adder_dcop_63 problem - Inner solver initialized with random values

1 5 10 15 20 25
Iteration (Index) j→

1

5

10

15

20

25

←
Ite

ra
tio

n
(I

nd
ex

)
i

No Fa
ult

ing

Iterations w.o. Faulting:4

Number of Outer Iterations with and without Faulting
(Pseudo Hessenberg Matrix H̄(i, j))

4

5

N
um

be
r

of
O

ut
er

Ite
ra

tio
ns

(m
1)

(a) Faulting with ILU - preconditioning

and: hi,j = hi,j × ||A||2 × 10150

1 5 10 15 20 25
Iteration (Index) j→

1

5

10

15

20

25

←
Ite

ra
tio

n
(I

nd
ex

)
i

No Fa
ult

ing

Iterations w.o. Faulting:4

Number of Outer Iterations with and without Faulting
(Pseudo Hessenberg Matrix H̄(i, j))

4

5

N
um

be
r

of
O

ut
er

Ite
ra

tio
ns

(m
1)

(b) Faulting with ILU - preconditioning

and: hi,j = hi,j × ||A||2 × 1050

1 5 10 15 20 25
Iteration (Index) j→

1

5

10

15

20

25

←
Ite

ra
tio

n
(I

nd
ex

)
i

No Fa
ult

ing

Iterations w.o. Faulting:4

Number of Outer Iterations with and without Faulting
(Pseudo Hessenberg Matrix H̄(i, j))

4

5

N
um

be
r

of
O

ut
er

Ite
ra

tio
ns

(m
1)

(c) Faulting with ILU - preconditioning

and: hi,j = hi,j × ||A||2 × 1010

1 5 10 15 20 25
Iteration (Index) j→

1

5

10

15

20

25

←
Ite

ra
tio

n
(I

nd
ex

)
i

No Fa
ult

ing

Iterations w.o. Faulting:4

Number of Outer Iterations with and without Faulting
(Pseudo Hessenberg Matrix H̄(i, j))

4

5

N
um

be
r

of
O

ut
er

Ite
ra

tio
ns

(m
1)

(d) Faulting with ILU - preconditioning

and: hi,j = hi,j × ||A||2 × 1

Figure 71 Number of outer iterations for a single fault on a specific position during orthogonaliza-

tion with ILU -preconditioning while solving the adder_dcop_63 matrix (and ErrorILU 3 ≈ 3×10−1).

In figure 71 the adder_dcop_63 problem is solved with ILU -preconditioning. For the first trial

in figure 71 it takes 4 outer iterations (m1) for the F-GMRES without faulting of the inner solver

whereas 25 iterations (m2) are set for the inner solver. There is no overhead caused according

to the definition in formula 107. The advantage of using ILU -preconditioning comes mainly by

reducing the area where additional iterations are needed because of a single fault such that there

is a great improvement. The inner solver of the F(T)-GMRES builds an upper Hessenberg matrix

as in formula 104. The relative residuum is below 10−9 for all trials and computations.

Experimental Studies on FT-GMRES Page 122 of 226

9.5.10 Faulting with different kinds of faults and ILU-preconditioning during solving the

adder_dcop_63 problem - Inner solver initialized with zero values

1 5 10 15 20 25
Iteration (Index) j→

1

5

10

15

20

25

←
Ite

ra
tio

n
(I

nd
ex

)
i

No Fa
ult

ing

Iterations w.o. Faulting:3

Number of Outer Iterations with and without Faulting
(Pseudo Hessenberg Matrix H̄(i, j))

3

4

N
um

be
r

of
O

ut
er

Ite
ra

tio
ns

(m
1)

(a) Faulting with ILU - preconditioning

and: hi,j = hi,j × ||A||2 × 10150

1 5 10 15 20 25
Iteration (Index) j→

1

5

10

15

20

25

←
Ite

ra
tio

n
(I

nd
ex

)
i

No Fa
ult

ing

Iterations w.o. Faulting:3

Number of Outer Iterations with and without Faulting
(Pseudo Hessenberg Matrix H̄(i, j))

3

4

N
um

be
r

of
O

ut
er

Ite
ra

tio
ns

(m
1)

(b) Faulting with ILU - preconditioning

and: hi,j = hi,j × ||A||2 × 1050

1 5 10 15 20 25
Iteration (Index) j→

1

5

10

15

20

25

←
Ite

ra
tio

n
(I

nd
ex

)
i

No Fa
ult

ing

Iterations w.o. Faulting:3

Number of Outer Iterations with and without Faulting
(Pseudo Hessenberg Matrix H̄(i, j))

3

4

N
um

be
r

of
O

ut
er

Ite
ra

tio
ns

(m
1)

(c) Faulting with ILU - preconditioning

and: hi,j = hi,j × ||A||2 × 1010

1 5 10 15 20 25
Iteration (Index) j→

1

5

10

15

20

25

←
Ite

ra
tio

n
(I

nd
ex

)
i

No Fa
ult

ing

Iterations w.o. Faulting:3

Number of Outer Iterations with and without Faulting
(Pseudo Hessenberg Matrix H̄(i, j))

3

4

N
um

be
r

of
O

ut
er

Ite
ra

tio
ns

(m
1)

(d) Faulting with ILU - preconditioning

and: hi,j = hi,j × ||A||2 × 1

Figure 72 Number of outer iterations for a single fault on a specific position during orthogonaliza-

tion with ILU -preconditioning while solving the adder_dcop_63 matrix (and ErrorILU 3 ≈ 3×10−1).

In figure 72 the adder_dcop_63 problem is solved with ILU -preconditioning. For the first trial

in figure 72 it takes 3 outer iterations (m1) for the F-GMRES without faulting of the inner solver

whereas 25 iterations (m2) are set for the inner solver. There is no overhead caused according

to the definition in formula 107. The advantage of using ILU -preconditioning comes mainly by

reducing the area where additional iterations are needed because of a single fault such that there

is a great improvement. The inner solver of the F(T)-GMRES builds an upper Hessenberg matrix

as in formula 104. The relative residuum is below 10−9 for all trials and computations.

Experimental Studies on FT-GMRES Page 123 of 226

9.6 Faulting while solving the 2D Poisson and adder_dcop_63 problem
with flexible preconditioning by the inner solver of the FT-GMRES

This section is mainly related to flexible preconditioning, flexible preconditioning mainly helps to

decrease the needed number of iterations for the inner solver (m1). Therefore it also helps to

decrease the number of operations for the inner solver (line 4 of algorithm 14) and as well of

the whole F(T)-GMRES solver because most of the work should be done in the inner solver of

the F-GMRES and FT-GMRES solver. The inner solver is stopped if a specific accuracy (ε) for the

solution vector (wj) is achieved, this approach mainly avoids unnecessary work. This is also the

main contrast between (right) preconditioning where always the same number of iterations (work)

for the inner solver is applied and flexible preconditioning where different numbers of iterations

(m2) are possible for the inner solver.

There are different possibilities how flexible preconditioning can be done. The first possibil-

ity is to check the accuracy (ε2) of the solution vector (wj) in the inner solver with ||(qj+1 −
Awj+1)||2/||qj+1||2 ≤ ε2. If the desired accuracy (ε2) of the solution vector (wj) is achieved the

inner solver is stopped independent of the maximum number of iterations (m2) for the inner solver.

The expression ||(qj+1 − Awj+1)||2/||qj+1||2 ≤ ε2 is similar to ||(b − Ax||2/||b||2 ≤ ε which measures

the accuracy of the outer solver (m1) for vector x. The only thing which has changed is the right

hand side of vector qj(b) and the according solution vector wj(x) where both expressions measure

the accuracy (ε) of the inner (wj) and outer solver (x) for the right hand side qj and b.

The second possibility is just to check the linear in-dependency of two residuals with the ex-

pression of 1− ||rj ||2||r0||2 ≥ δg [7] with rj = b−Axj as the current residuum and r0 = b−Ax0 as the start

residuum some more information can be found in section 10.1. A value of δg = 1 indicates linear

in-dependency whereas a value δg = 0 means that rj and r0 are still equivalent such that further

iterations (m2) have to be done for the inner solver of the F(T)-GMRES. Furthermore because of

the fact that computing rj is really expensive in terms of operations the approximation error (see

section 5) is used instead with ||rj ||2 ≈ ||σ2||22 and ||r0||2 ≈ ||σ0||22 such that 1− ||σj ||22
||σ0||22

≥ δg. The F(T)-

GMRES will do different iterations if flexible preconditioning is applied therefore the overhead is

measured in floating point operations (see section 6.1.4), the related flops are shown in figure 110.

In the case of flexible preconditioning with different numbers of iterations for the inner solver the

total flops are summed up for each execution of the inner solver respective outer iteration. Only

positions which are shown in figure 110 are tested with a single fault and the related error.

Matrix H̃(i, j) which shows the number of total operations (estimated flops) in the

presence of a single fault for each position of hi,j in the inner solver of the FT-GMRES:

H̃(i, j) =

Ite
ra

tio
n

(In
d

e
x)
i→



× × × × × × × × ×
× × × × × × × ×
× × × × × × ×
× × × × × ×
× × × × ×
× × × ×

F × × ×
× ×
×



N
u

m
b

e
r

o
f

to
ta

l
F

lo
p

s
(e

st
im

a
te

d
)

(F
T-

G
M

R
E

S
)

(110)

Figure 73 Matrix H̃(i, j) which visualizes where faulting is applied during the orthogonalization

process (hi,j) in the inner solver of the FT-GMRES with the according number of operations (flops).

Experimental Studies on FT-GMRES Page 124 of 226

9.6.1 The absolute change (δ) between the current (σj) and previous iteration (σj−1) in

the inner solver of the F-GMRES - Inner solver initialized with zero values

1 5 10 15 20 25
Number of Inner Iteration j (Inner Solver)

10−3

10−2

10−1
δ

=
||σ

j||
2 2
−
||σ

j−
1||

2 2

2D Poisson Matrix, Inner Solver of F-GMRES initalized with Zero-Values

Figure 74 The absolute change (δ) between the current (σj) and previous iteration (σj−1) in the

inner solver of the F-GMRES during solving the 2D Poisson matrix for 25 inner iterations (m2).

1 5 10 15 20 25
Number of Inner Iteration j (Inner Solver)

10−8

10−7

10−6

10−5

10−4

10−3

10−2

10−1

100

δ
=
||σ

j||
2 2
−
||σ

j−
1||

2 2

adder dcop 63 Matrix, Inner Solver of F-GMRES initalized with Zero-Values

Figure 75 The absolute change (δ) between the current (σj) and previous iteration (σj−1) in the

inner solver of the F-GMRES during solving the adder_dcop_63 matrix for 25 inner iterations (m2).

In figure 74 and 75 the absolute change (δ) between the current (σj) and previous iteration

(σj−1) in the inner solver of the F-GMRES is shown for all outer iterations (executions of the inner

solver). In figure 75 there is a wider range for the change of the residuals (δ) in contrast to figure

74 where the 2D Poisson matrix is solved. The color goes from black (first outer iteration - first

execution of the inner solver) to white (last outer iteration - last execution of the inner solver). The

relative residuum is below 10−9 for all computations and trails of the F-GMRES in figure 74 and 75.

Experimental Studies on FT-GMRES Page 125 of 226

9.6.2 The relative change (δg) between the first (σ0) and current iteration (σj) in the inner

solver of the F-GMRES - Inner solver initialized with zero values

1 5 10 15 20 25
Number of Inner Iteration j (Inner Solver)

10−2

10−1

100
1
−
||σ

j||
2 2

||σ
0||

2 2
=
δ g

2D Poisson Matrix, Inner Solver of F-GMRES initalized with Zero-Values

Figure 76 The relative change (δg) between the first (σ0) and current iteration (σj) in the inner

solver of the F-GMRES during solving the 2D Poisson matrix for 25 inner iterations (m2).

1 5 10 15 20 25
Number of Inner Iteration j (Inner Solver)

10−4

10−3

10−2

10−1

100

1
−
||σ

j||
2 2

||σ
0||

2 2
=
δ g

adder dcop 63 Matrix, Inner Solver of F-GMRES initalized with Zero-Values

Figure 77 The relative change (δg) between the first (σ0) and current iteration (σj) in the inner

solver of the F-GMRES during solving the adder_dcop_63 matrix for 25 inner iterations (m2).

In figure 76 and 77 the relative change (δg) between the first (σ0) and current iteration (σj) in

the inner solver of the F-GMRES is shown for all outer iterations (executions of the inner solver).

These figures show that the value of δg decreases (tendencially) from 1 to 0 with increasing the

number of outer iteration (execution of the inner solver), in the inner solver of the F-GMRES. It

means it takes more iterations for the inner solver to achieve δg = 1. The color goes from black (first

outer iteration - first execution of the inner solver) to white (last outer iteration - last execution of

the inner solver). The relative residuum is below 10−9 for all computations and trails of F-GMRES.

Experimental Studies on FT-GMRES Page 126 of 226

9.6.3 Adaptive controlling the number of iterations for the inner solver of the F-GMRES

(flexible preconditioning) - Inner solver initialized with zero values

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Number of Operations (Flops - analytical) ×108

10−10

10−9

10−8

10−7

10−6

10−5

10−4

10−3

10−2

10−1

100

R
el

at
iv

e
R

es
id

uu
m
||A

x
−b
|| 2

||b
|| 2

Maximum allowable Residuum

F-GMRES(35) with 35 Inner Iterations (m2) and δg=1.0
F-GMRES(35) with 35 Inner Iterations (m2) and δg=0.95
F-GMRES(35) with 35 Inner Iterations (m2) and δg=0.9
F-GMRES(35) with 35 Inner Iterations (m2) and δg=0.5

Figure 78 Solving the 2D Poisson matrix with controlling the number of inner iterations (m2).

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8
Number of Operations (Flops - analytical) ×108

10−10

10−9

10−8

10−7

10−6

10−5

10−4

10−3

10−2

10−1

100

R
el

at
iv

e
R

es
id

uu
m
||A

x
−b
|| 2

||b
|| 2

Maximum allowable Residuum

F-GMRES(35) with 35 Inner Iterations (m2) and δg=1.0
F-GMRES(35) with 35 Inner Iterations (m2) and δg=0.95
F-GMRES(35) with 35 Inner Iterations (m2) and δg=0.9
F-GMRES(35) with 35 Inner Iterations (m2) and δg=0.5

Figure 79 Solving the adder_dcop_63 matrix with controlling the number of inner iterations (m2).

In figure 78 and 79 the value of δg (δg = 1 − ||σj ||22
||σ0||22

) is examined in the inner solver of the F-

GMRES. If a specific value for δg is achieved the inner solver is stopped with preconditioning and

the outer solver is allowed to continue which leads to a reduction for the number of operations as

well to a lowering for the number of iterations of the inner solver. Hence a value of δg = 1 means

full linear in-dependency such that the inner solver of the F-GMRES has to do preconditioning for

all iterations (m2). In figure 78 there is a reduction of flops with δg = 0.5 of about 230 % against a

computation with δg = 1 but in figure 79 there is less reduction. There are no faults induced while

solving these problems only flexible preconditioning is applied. Hence after some experiments with

other matrices it was also possible to reduce the number of operations but not for each problem.

Experimental Studies on FT-GMRES Page 127 of 226

9.6.4 Adaptive controlling the number of iterations for the inner solver of the FT-GMRES

(flexible preconditioning) - Inner solver initialized with zero values

0.0 0.2 0.4 0.6 0.8 1.0 1.2
Number of Operations (Flops - analytical) ×108

10−10

10−9

10−8

10−7

10−6

10−5

10−4

10−3

10−2

10−1

100

R
el

at
iv

e
R

es
id

uu
m
||A

x
−b
|| 2

||b
|| 2

Maximum allowable Residuum

FT-GMRES(35) with 35 Inner Iterations (m2) and δg=0.5, without Faulting

FT-GMRES(35) with 35 Inner Iterations (m2) and δg=0.5, Faulting at 1st Exe.

FT-GMRES(35) with 35 Inner Iterations (m2) and δg=0.5, Faulting at 5th Exe.

FT-GMRES(35) with 35 Inner Iterations (m2) and δg=0.5, Faulting at 10th Exe.

Figure 80 Solving the 2D Poisson matrix with controlling the number of iterations (m2) for the

inner solver. In this case faulting is applied during different executions of the inner solver.

0.0 0.5 1.0 1.5
Number of Operations (Flops - analytical) ×108

10−10

10−9

10−8

10−7

10−6

10−5

10−4

10−3

10−2

10−1

100

R
el

at
iv

e
R

es
id

uu
m
||A

x
−b
|| 2

||b
|| 2

Maximum allowable Residuum

FT-GMRES(35) with 35 Inner Iterations (m2) and δg=0.5, without Faulting

FT-GMRES(35) with 35 Inner Iterations (m2) and δg=0.5, Faulting at 1st Exe.

FT-GMRES(35) with 35 Inner Iterations (m2) and δg=0.5, Faulting at 5th Exe.

FT-GMRES(35) with 35 Inner Iterations (m2) and δg=0.5, Faulting at 10th Exe.

Figure 81 Solving the adder_dcop_63 matrix with controlling the number of iterations (m2) for the

inner solver. In this case faulting is applied during different executions of the inner solver.

As in section 9.6.3 flexible preconditioning is also applied in figure 80 and 81 while solving the

2D Poisson and adder_dcop_63 matrix. The inner solver of the F(T)-GMRES does at least 1 but at

most 35 iterations (m2). If a value of δg (δg = 1 − ||σj ||22
||σ0||22

) is achieved while preconditioning of the

inner solver then this solver is stopped and the outer solver is allowed to continue. Both figures

show the residual curves for solving the 2D Poisson and adder_dcop_63 matrix in the case of a

single fault (hi,j = hi,j × ||A||2 × 1010 on h1,2) during different executions of the inner solver. There

are additional operations (flops) needed to decrease the effect of a single fault in the inner solver.

Experimental Studies on FT-GMRES Page 128 of 226

9.6.5 Faulting during solving the 2D Poisson problem with flexible preconditioning (δg =

0.9) by the inner solver - Inner solver initialized with zero values

1 5 10 15 20 25
Iteration (Index) j→

1

5

10

15

20

25

←
Ite

ra
tio

n
(I

nd
ex

)
i

No Fa
ult

ing

Iterations w.o. Faulting:9

Number of Outer Iterations with and without Faulting
(Pseudo Hessenberg Matrix H̄(i, j))

9

10

11

N
um

be
r

of
O

ut
er

Ite
ra

tio
ns

(m
1)

(a) Faulting with:

hi,j = hi,j × ||A||2 × 10150, δg = 0.9

1 5 10 15 20 25
Iteration (Index) j→

1

5

10

15

20

25

←
Ite

ra
tio

n
(I

nd
ex

)
i

No Fa
ult

ing

Iterations w.o. Faulting:9

Number of Outer Iterations with and without Faulting
(Pseudo Hessenberg Matrix H̄(i, j))

9

10

11

N
um

be
r

of
O

ut
er

Ite
ra

tio
ns

(m
1)

(b) Faulting with:

hi,j = hi,j × ||A||2 × 1010, δg = 0.9

1 5 10 15 20 25
Iteration (Index) j→

1

5

10

15

20

25

←
Ite

ra
tio

n
(I

nd
ex

)
i

No Fa
ult

ing

Iterations w.o. Faulting:9

Number of Outer Iterations with and without Faulting
(Pseudo Hessenberg Matrix H̄(i, j))

9

10

11

N
um

be
r

of
O

ut
er

Ite
ra

tio
ns

(m
1)

(c) Faulting with:

hi,j = hi,j × ||A||2 × 10−300, δg = 0.9

1 5 10 15 20 25
Iteration (Index) j→

1

5

10

15

20

25

←
Ite

ra
tio

n
(I

nd
ex

)
i

No Fa
ult

ing

Iterations w.o. Faulting:9

Number of Outer Iterations with and without Faulting
(Pseudo Hessenberg Matrix H̄(i, j))

9

10

11

N
um

be
r

of
O

ut
er

Ite
ra

tio
ns

(m
1)

(d) Faulting with:

hi,j = hi,j × ||A||2 × 10−0.5, δg = 0.9

Figure 82 Number of outer iterations for a single fault on a specific position during orthogonal-

ization (hi,j) of the inner solver with flexible preconditioning while solving the 2D Poisson matrix.

As in section 9.6.4 flexible preconditioning is also applied in figure 82 during solving the 2D

Poisson matrix. The inner solver of the FT-GMRES does at least 25 but at most 35 iterations (m2).

If a value of δg = 0.9 (δg = 1 − ||σj ||22
||σ0||22

) is achieved during preconditioning of the inner solver then

this solver is stopped and the outer solver is allowed to continue. It is assumed that during these

additional iterations (between 25 to 35) there is no fault in the inner solver of the FT-GMRES. The

worst overhead is 10 % (11/10) which is an improvement against 36 % in the presence of a single

fault. The relative residuum (||r||2 = ||Ax− b||2/||b||2) is below 10−9 for all computations and trials.

Experimental Studies on FT-GMRES Page 129 of 226

9.6.6 Faulting during solving the 2D Poisson problem with flexible preconditioning (δg =

0.95) by the inner solver - Inner solver initialized with zero values

1 5 10 15 20 25
Iteration (Index) j→

1

5

10

15

20

25

←
Ite

ra
tio

n
(I

nd
ex

)
i

No Fa
ult

ing

Iterations w.o. Faulting:9

Number of Outer Iterations with and without Faulting
(Pseudo Hessenberg Matrix H̄(i, j))

9

10

11

12

N
um

be
r

of
O

ut
er

Ite
ra

tio
ns

(m
1)

(a) Faulting with:

hi,j = hi,j × ||A||2 × 10150, δg = 0.95

1 5 10 15 20 25
Iteration (Index) j→

1

5

10

15

20

25

←
Ite

ra
tio

n
(I

nd
ex

)
i

No Fa
ult

ing

Iterations w.o. Faulting:9

Number of Outer Iterations with and without Faulting
(Pseudo Hessenberg Matrix H̄(i, j))

9

10

11

N
um

be
r

of
O

ut
er

Ite
ra

tio
ns

(m
1)

(b) Faulting with:

hi,j = hi,j × ||A||2 × 1010, δg = 0.95

1 5 10 15 20 25
Iteration (Index) j→

1

5

10

15

20

25

←
Ite

ra
tio

n
(I

nd
ex

)
i

No Fa
ult

ing

Iterations w.o. Faulting:9

Number of Outer Iterations with and without Faulting
(Pseudo Hessenberg Matrix H̄(i, j))

9

10

11

N
um

be
r

of
O

ut
er

Ite
ra

tio
ns

(m
1)

(c) Faulting with:

hi,j = hi,j × ||A||2 × 10−300, δg = 0.95

1 5 10 15 20 25
Iteration (Index) j→

1

5

10

15

20

25

←
Ite

ra
tio

n
(I

nd
ex

)
i

No Fa
ult

ing

Iterations w.o. Faulting:9

Number of Outer Iterations with and without Faulting
(Pseudo Hessenberg Matrix H̄(i, j))

9

10

11

N
um

be
r

of
O

ut
er

Ite
ra

tio
ns

(m
1)

(d) Faulting with:

hi,j = hi,j × ||A||2 × 10−0.5, δg = 0.95

Figure 83 Number of outer iterations for a single fault on a specific position during orthogonal-

ization (hi,j) of the inner solver with flexible preconditioning while solving the 2D Poisson matrix.

As in section 9.6.4 flexible preconditioning is also applied in figure 83 during solving the 2D

Poisson matrix. The inner solver of the FT-GMRES does at least 25 but at most 35 iterations (m2).

If a value of δg = 0.95 (δg = 1 − ||σj ||22
||σ0||22

) is achieved during preconditioning of the inner solver then

this solver is stopped and the outer solver is allowed to continue. It is assumed that during these

additional iterations (between 25 to 35) there is no fault in the inner solver of the FT-GMRES. The

worst overhead is 20 % (12/10) which is still an improvement against 36 % in the presence of a

single fault. The relative residuum (||r||2 = ||Ax− b||2/||b||2) is below 10−9 for all computations and

trials.

Experimental Studies on FT-GMRES Page 130 of 226

9.6.7 Number of flops for solving the 2D Poisson problem with flexible preconditioning

by the inner solver and faulting - Inner solver initialized with zero values

1 5 10 15 20 25
Iteration (Index) j→

1

5

10

15

20

25

←
Ite

ra
tio

n
(I

nd
ex

)
i

No Fa
ult

ing

Flops w.o. Faulting:
2.990×108

Number of Flops with and without Faulting
(Pseudo Hessenberg Matrix H̃(i, j))

2.99

3.16

3.33

3.49

3.66

N
um

be
r

of
to

ta
lF

lo
ps

(F
T-

G
M

R
E

S
)×108

(a) Faulting with:

hi,j = hi,j × ||A||2 × 1010, δg = 1.00

1 5 10 15 20 25
Iteration (Index) j→

1

5

10

15

20

25

←
Ite

ra
tio

n
(I

nd
ex

)
i

No Fa
ult

ing

Flops w.o. Faulting:
2.315×108

Number of Flops with and without Faulting
(Pseudo Hessenberg Matrix H̃(i, j))

2.31

2.48

2.66

2.83

3.00

N
um

be
r

of
to

ta
lF

lo
ps

(F
T-

G
M

R
E

S
)×108

(b) Faulting with:

hi,j = hi,j × ||A||2 × 1010, δg = 0.95

1 5 10 15 20 25
Iteration (Index) j→

1

5

10

15

20

25

←
Ite

ra
tio

n
(I

nd
ex

)
i

No Fa
ult

ing

Flops w.o. Faulting:
1.953×108

Number of Flops with and without Faulting
(Pseudo Hessenberg Matrix H̃(i, j))

1.95

2.15

2.36

2.56

2.76

N
um

be
r

of
to

ta
lF

lo
ps

(F
T-

G
M

R
E

S
)×108

(c) Faulting with:

hi,j = hi,j × ||A||2 × 1010, δg = 0.9

1 5 10 15 20 25
Iteration (Index) j→

1

5

10

15

20

25

←
Ite

ra
tio

n
(I

nd
ex

)
i

No Fa
ult

ing

Flops w.o. Faulting:
1.157×108

Number of Flops with and without Faulting
(Pseudo Hessenberg Matrix H̃(i, j))

1.16

1.37

1.57

1.78

1.98

N
um

be
r

of
to

ta
lF

lo
ps

(F
T-

G
M

R
E

S
)×108

(d) Faulting with:

hi,j = hi,j × ||A||2 × 1010, δg = 0.5

Figure 84 Number of total flops for a single fault on a specific position during orthogonalization

(hi,j) of the inner solver with flexible preconditioning while solving the 2D Poisson matrix.

As in section 9.6.4 flexible preconditioning is also applied in figure 84 during solving the 2D

Poisson matrix. The inner solver of the FT-GMRES does at least 5 but at most 35 iterations (m2).

In figure 84 always the same error is induced for a single fault but the value of δg (δg = 1− ||σj ||22
||σ0||22

)

is changed, if this value is achieved during preconditioning of the inner solver then this solver is

stopped and the outer solver is allowed to continue. The worst overhead (≈ 10 - 50 %) does not

remain the same and the total number of flops is different for each different value of δg without

faulting. In this case flexible preconditioning mainly helps to decrease the needed number of flops

without faulting. The relative residuum (||r||2 = ||Ax−b||2/||b||2) is below 10−9 for all computations.

Experimental Studies on FT-GMRES Page 131 of 226

9.6.8 Number of flops for solving the 2D Poisson problem with flexible preconditioning

by the inner solver and faulting - Inner solver initialized with zero values

1 5 10 15 20 25
Iteration (Index) j→

1

5

10

15

20

25

←
Ite

ra
tio

n
(I

nd
ex

)
i

No Fa
ult

ing

Flops w.o. Faulting:
2.990×108

Number of Flops with and without Faulting
(Pseudo Hessenberg Matrix H̃(i, j))

2.99

3.16

3.33

3.49

3.66

N
um

be
r

of
to

ta
lF

lo
ps

(F
T-

G
M

R
E

S
)×108

(a) Faulting with:

hi,j = hi,j × ||A||2 × 10150, δg = 1.00

1 5 10 15 20 25
Iteration (Index) j→

1

5

10

15

20

25

←
Ite

ra
tio

n
(I

nd
ex

)
i

No Fa
ult

ing

Flops w.o. Faulting:
2.315×108

Number of Flops with and without Faulting
(Pseudo Hessenberg Matrix H̃(i, j))

2.31

2.54

2.77

3.00

3.23

N
um

be
r

of
to

ta
lF

lo
ps

(F
T-

G
M

R
E

S
)×108

(b) Faulting with:

hi,j = hi,j × ||A||2 × 10150, δg = 0.95

1 5 10 15 20 25
Iteration (Index) j→

1

5

10

15

20

25

←
Ite

ra
tio

n
(I

nd
ex

)
i

No Fa
ult

ing

Flops w.o. Faulting:
1.953×108

Number of Flops with and without Faulting
(Pseudo Hessenberg Matrix H̃(i, j))

1.95

2.21

2.46

2.72

2.97

N
um

be
r

of
to

ta
lF

lo
ps

(F
T-

G
M

R
E

S
)×108

(c) Faulting with:

hi,j = hi,j × ||A||2 × 10150, δg = 0.9

1 5 10 15 20 25
Iteration (Index) j→

1

5

10

15

20

25

←
Ite

ra
tio

n
(I

nd
ex

)
i

No Fa
ult

ing

Flops w.o. Faulting:
1.157×108

Number of Flops with and without Faulting
(Pseudo Hessenberg Matrix H̃(i, j))

1.16

1.47

1.77

2.08

2.38

N
um

be
r

of
to

ta
lF

lo
ps

(F
T-

G
M

R
E

S
)×108

(d) Faulting with:

hi,j = hi,j × ||A||2 × 10150, δg = 0.5

Figure 85 Number of total flops for a single fault on a specific position during orthogonalization

(hi,j) of the inner solver with flexible preconditioning while solving the 2D Poisson matrix.

As in section 9.6.4 flexible preconditioning is also applied in figure 85 during solving the 2D

Poisson matrix. The inner solver of the FT-GMRES does at least 5 but at most 35 iterations (m2).

In figure 85 always the same error is induced for a single fault but the value of δg (δg = 1− ||σj ||22
||σ0||22

)

is changed, if this value is achieved during preconditioning of the inner solver then this solver is

stopped and the outer solver is allowed to continue. The worst overhead (≈ 10 - 80 %) does not

remain the same and the total number of flops is different for each different value of δg without

faulting. In this case flexible preconditioning mainly helps to decrease the needed number of flops

without faulting. The relative residuum (||r||2 = ||Ax−b||2/||b||2) is below 10−9 for all computations.

Experimental Studies on FT-GMRES Page 132 of 226

9.6.9 Number of flops for solving the 2D Poisson problem with flexible preconditioning

by the inner solver and faulting - Inner solver initialized with zero values

1 5 10 15 20 25
Iteration (Index) j→

1

5

10

15

20

25

←
Ite

ra
tio

n
(I

nd
ex

)
i

No Fa
ult

ing

Flops w.o. Faulting:
2.990×108

Number of Flops with and without Faulting
(Pseudo Hessenberg Matrix H̃(i, j))

2.99

3.16

3.33

3.49

3.66

N
um

be
r

of
to

ta
lF

lo
ps

(F
T-

G
M

R
E

S
)×108

(a) Faulting with:

hi,j = hi,j × ||A||2 × 10150, δg = 1.00

1 5 10 15 20 25
Iteration (Index) j→

1

5

10

15

20

25

←
Ite

ra
tio

n
(I

nd
ex

)
i

No Fa
ult

ing

Flops w.o. Faulting:
2.076×108

Number of Flops with and without Faulting
(Pseudo Hessenberg Matrix H̃(i, j))

2.08

2.35

2.62

2.89

3.16

N
um

be
r

of
to

ta
lF

lo
ps

(F
T-

G
M

R
E

S
)×108

(b) Faulting with:

hi,j = hi,j × ||A||2 × 10150, δg = 0.95

1 5 10 15 20 25
Iteration (Index) j→

1

5

10

15

20

25

←
Ite

ra
tio

n
(I

nd
ex

)
i

No Fa
ult

ing

Flops w.o. Faulting:
1.777×108

Number of Flops with and without Faulting
(Pseudo Hessenberg Matrix H̃(i, j))

1.78

2.10

2.42

2.73

3.05

N
um

be
r

of
to

ta
lF

lo
ps

(F
T-

G
M

R
E

S
)×108

(c) Faulting with:

hi,j = hi,j × ||A||2 × 10150, δg = 0.9

1 5 10 15 20 25
Iteration (Index) j→

1

5

10

15

20

25

←
Ite

ra
tio

n
(I

nd
ex

)
i

No Fa
ult

ing

Flops w.o. Faulting:
9.594×107

Number of Flops with and without Faulting
(Pseudo Hessenberg Matrix H̃(i, j))

0.96

1.07

1.18

1.29

1.40

N
um

be
r

of
to

ta
lF

lo
ps

(F
T-

G
M

R
E

S
)×108

(d) Faulting with:

hi,j = hi,j × ||A||2 × 10150, δg = 0.5

Figure 86 Number of total flops for a single fault on a specific position during orthogonalization

(hi,j) of the inner solver with flexible preconditioning while solving the 2D Poisson matrix.

As in section 9.6.4 flexible preconditioning is also applied in figure 86 during solving the 2D

Poisson matrix. The inner solver of the FT-GMRES does at least 1 but at most 35 iterations (m2).

In figure 86 always the same error is induced for a single fault but the value of δg (δg = 1− ||σj ||22
||σ0||22

)

is changed, if this value is achieved during preconditioning of the inner solver then this solver is

stopped and the outer solver is allowed to continue. The worst overhead (≈ 10 - 60 %) does not

remain the same and the total number of flops is different for each different value of δg without

faulting. In this case flexible preconditioning mainly helps to decrease the needed number of flops

without faulting. The relative residuum (||r||2 = ||Ax−b||2/||b||2) is below 10−9 for all computations.

Experimental Studies on FT-GMRES Page 133 of 226

9.6.10 Faulting during solving the adder_dcop_63 problem with flexible preconditioning

(δg = 0.9) by the inner solver - Inner solver initialized with zero values

1 5 10 15 20 25
Iteration (Index) j→

1

5

10

15

20

25

←
Ite

ra
tio

n
(I

nd
ex

)
i

No Fa
ult

ing

Iterations w.o. Faulting:32

Number of Outer Iterations with and without Faulting
(Pseudo Hessenberg Matrix H̄(i, j))

32

34

36

38

40

42

44

46

N
um

be
r

of
O

ut
er

Ite
ra

tio
ns

(m
1)

(a) Faulting with:

hi,j = hi,j × ||A||2 × 10150, δg = 0.9

1 5 10 15 20 25
Iteration (Index) j→

1

5

10

15

20

25

←
Ite

ra
tio

n
(I

nd
ex

)
i

No Fa
ult

ing

Iterations w.o. Faulting:32

Number of Outer Iterations with and without Faulting
(Pseudo Hessenberg Matrix H̄(i, j))

32

33

34

35

N
um

be
r

of
O

ut
er

Ite
ra

tio
ns

(m
1)

(b) Faulting with:

hi,j = hi,j × ||A||2 × 1010, δg = 0.9

1 5 10 15 20 25
Iteration (Index) j→

1

5

10

15

20

25

←
Ite

ra
tio

n
(I

nd
ex

)
i

No Fa
ult

ing

Iterations w.o. Faulting:32

Number of Outer Iterations with and without Faulting
(Pseudo Hessenberg Matrix H̄(i, j))

32

33

34

35

36

37

N
um

be
r

of
O

ut
er

Ite
ra

tio
ns

(m
1)

(c) Faulting with:

hi,j = hi,j × ||A||2 × 10−300, δg = 0.9

1 5 10 15 20 25
Iteration (Index) j→

1

5

10

15

20

25

←
Ite

ra
tio

n
(I

nd
ex

)
i

No Fa
ult

ing

Iterations w.o. Faulting:32

Number of Outer Iterations with and without Faulting
(Pseudo Hessenberg Matrix H̄(i, j))

32

33

34

35

N
um

be
r

of
O

ut
er

Ite
ra

tio
ns

(m
1)

(d) Faulting with:

hi,j = hi,j × ||A||2 × 10−0.5, δg = 0.9

Figure 87 Number of outer iterations for a single fault on a specific position during orthogonaliza-

tion (hi,j) of the inner solver with flexible preconditioning while solving the adder_dcop_63 matrix.

As in section 9.6.4 flexible preconditioning is also applied in figure 87 during solving the

adder_dcop_63 matrix. The inner solver of the FT-GMRES does at least 25 but at most 35 iter-

ations (m2). If a value of δg = 0.90 (δg = 1− ||σj ||22
||σ0||22

) is achieved during preconditioning of the inner

solver then this solver is stopped and the outer solver is allowed to continue. It is assumed that

during these additional iterations (between 25 to 35) there is no fault in the inner solver of the

FT-GMRES. The worst overhead is 40 % (46/33) which is a decline from 15 % in the presence of a

single fault. The relative residuum (||r||2 = ||Ax− b||2/||b||2) is below 10−9 for all trials.

Experimental Studies on FT-GMRES Page 134 of 226

9.6.11 Faulting during solving the adder_dcop_63 problem with flexible preconditioning

(δg = 0.95) by the inner solver - Inner solver initialized with zero values

1 5 10 15 20 25
Iteration (Index) j→

1

5

10

15

20

25

←
Ite

ra
tio

n
(I

nd
ex

)
i

No Fa
ult

ing

Iterations w.o. Faulting:27

Number of Outer Iterations with and without Faulting
(Pseudo Hessenberg Matrix H̄(i, j))

27

28

29

30

31

32

33

34

35

N
um

be
r

of
O

ut
er

Ite
ra

tio
ns

(m
1)

(a) Faulting with:

hi,j = hi,j × ||A||2 × 10150, δg = 0.95

1 5 10 15 20 25
Iteration (Index) j→

1

5

10

15

20

25

←
Ite

ra
tio

n
(I

nd
ex

)
i

No Fa
ult

ing

Iterations w.o. Faulting:27

Number of Outer Iterations with and without Faulting
(Pseudo Hessenberg Matrix H̄(i, j))

27

28

29

30

N
um

be
r

of
O

ut
er

Ite
ra

tio
ns

(m
1)

(b) Faulting with:

hi,j = hi,j × ||A||2 × 1010, δg = 0.95

1 5 10 15 20 25
Iteration (Index) j→

1

5

10

15

20

25

←
Ite

ra
tio

n
(I

nd
ex

)
i

No Fa
ult

ing

Iterations w.o. Faulting:27

Number of Outer Iterations with and without Faulting
(Pseudo Hessenberg Matrix H̄(i, j))

27

28

29

30

N
um

be
r

of
O

ut
er

Ite
ra

tio
ns

(m
1)

(c) Faulting with:

hi,j = hi,j × ||A||2 × 10−300, δg = 0.95

1 5 10 15 20 25
Iteration (Index) j→

1

5

10

15

20

25

←
Ite

ra
tio

n
(I

nd
ex

)
i

No Fa
ult

ing

Iterations w.o. Faulting:27

Number of Outer Iterations with and without Faulting
(Pseudo Hessenberg Matrix H̄(i, j))

27

28

29

30

N
um

be
r

of
O

ut
er

Ite
ra

tio
ns

(m
1)

(d) Faulting with:

hi,j = hi,j × ||A||2 × 10−0.5, δg = 0.95

Figure 88 Number of outer iterations for a single fault on a specific position during orthogonaliza-

tion (hi,j) of the inner solver with flexible preconditioning while solving the adder_dcop_63 matrix.

As in section 9.6.4 flexible preconditioning is also applied in figure 88 during solving the

adder_dcop_63 matrix. The inner solver of the FT-GMRES does at least 25 but at most 35 iter-

ations (m2). If a value of δg = 0.95 (δg = 1− ||σj ||22
||σ0||22

) is achieved during preconditioning of the inner

solver then this solver is stopped and the outer solver is allowed to continue. It is assumed that

during these additional iterations (between 25 to 35) there is no fault in the inner solver of the

FT-GMRES. The worst overhead is 25 % (35/28) which is a decline from 15 % in the presence of a

single fault. The relative residuum (||r||2 = ||Ax− b||2/||b||2) is below 10−9 for all trials.

Experimental Studies on FT-GMRES Page 135 of 226

9.6.12 Number of flops for solving the adder_dcop_63 problem with flexible precondi-

tioning by the inner solver and faulting - Inner solver initialized with zero values

1 5 10 15 20 25
Iteration (Index) j→

1

5

10

15

20

25

←
Ite

ra
tio

n
(I

nd
ex

)
i

No Fa
ult

ing

Flops w.o. Faulting:
1.638×108

Number of Flops with and without Faulting
(Pseudo Hessenberg Matrix H̃(i, j))

1.64

1.67

1.71

1.74

1.77

N
um

be
r

of
to

ta
lF

lo
ps

(F
T-

G
M

R
E

S
)×108

(a) Faulting with:

hi,j = hi,j × ||A||2 × 1010, δg = 1.00

1 5 10 15 20 25
Iteration (Index) j→

1

5

10

15

20

25

←
Ite

ra
tio

n
(I

nd
ex

)
i

No Fa
ult

ing

Flops w.o. Faulting:
1.537×108

Number of Flops with and without Faulting
(Pseudo Hessenberg Matrix H̃(i, j))

1.54

1.63

1.72

1.80

1.89

N
um

be
r

of
to

ta
lF

lo
ps

(F
T-

G
M

R
E

S
)×108

(b) Faulting with:

hi,j = hi,j × ||A||2 × 1010, δg = 0.95

1 5 10 15 20 25
Iteration (Index) j→

1

5

10

15

20

25

←
Ite

ra
tio

n
(I

nd
ex

)
i

No Fa
ult

ing

Flops w.o. Faulting:
1.566×108

Number of Flops with and without Faulting
(Pseudo Hessenberg Matrix H̃(i, j))

1.57

1.64

1.71

1.78

1.85

N
um

be
r

of
to

ta
lF

lo
ps

(F
T-

G
M

R
E

S
)×108

(c) Faulting with:

hi,j = hi,j × ||A||2 × 1010, δg = 0.9

1 5 10 15 20 25
Iteration (Index) j→

1

5

10

15

20

25

←
Ite

ra
tio

n
(I

nd
ex

)
i

No Fa
ult

ing

Flops w.o. Faulting:
1.726×108

Number of Flops with and without Faulting
(Pseudo Hessenberg Matrix H̃(i, j))

1.73

1.76

1.80

1.83

1.86

N
um

be
r

of
to

ta
lF

lo
ps

(F
T-

G
M

R
E

S
)×108

(d) Faulting with:

hi,j = hi,j × ||A||2 × 1010, δg = 0.5

Figure 89 Number of flops for a single fault on a specific position during orthogonalization (hi,j)

of the inner solver with flexible preconditioning while solving the adder_dcop_63 matrix.

As in section 9.6.4 flexible preconditioning is also applied in figure 89 during solving the

adder_dcop_63 matrix. The inner solver of the FT-GMRES does at least 5 but at most 35 itera-

tions (m2). In figure 89 always the same error is induced for a single fault but the value of δg

(δg = 1− ||σj ||22
||σ0||22

) is changed, if this value is achieved during preconditioning of the inner solver then

this solver is stopped and the outer solver is allowed to continue. The worst overhead (≈ 5 - 15 %)

does nearly remain the same and the total number of flops is different for each different value of δg
without faulting. In this case flexible preconditioning mainly helps to decrease the needed number

of flops without faulting. The accuracy (||r||2 = ||Ax− b||2/||b||2) is below 10−9 for all computations.

Experimental Studies on FT-GMRES Page 136 of 226

9.6.13 Number of flops for solving the adder_dcop_63 problem with flexible precondi-

tioning by the inner solver and faulting - Inner solver initialized with zero values

1 5 10 15 20 25
Iteration (Index) j→

1

5

10

15

20

25

←
Ite

ra
tio

n
(I

nd
ex

)
i

No Fa
ult

ing

Flops w.o. Faulting:
1.638×108

Number of Flops with and without Faulting
(Pseudo Hessenberg Matrix H̃(i, j))

1.64

1.88

2.13

2.37

2.61

N
um

be
r

of
to

ta
lF

lo
ps

(F
T-

G
M

R
E

S
)×108

(a) Faulting with:

hi,j = hi,j × ||A||2 × 10150, δg = 1.00

1 5 10 15 20 25
Iteration (Index) j→

1

5

10

15

20

25

←
Ite

ra
tio

n
(I

nd
ex

)
i

No Fa
ult

ing

Flops w.o. Faulting:
1.537×108

Number of Flops with and without Faulting
(Pseudo Hessenberg Matrix H̃(i, j))

1.54

1.82

2.11

2.39

2.67

N
um

be
r

of
to

ta
lF

lo
ps

(F
T-

G
M

R
E

S
)×108

(b) Faulting with:

hi,j = hi,j × ||A||2 × 10150, δg = 0.95

1 5 10 15 20 25
Iteration (Index) j→

1

5

10

15

20

25

←
Ite

ra
tio

n
(I

nd
ex

)
i

No Fa
ult

ing

Flops w.o. Faulting:
1.566×108

Number of Flops with and without Faulting
(Pseudo Hessenberg Matrix H̃(i, j))

1.57

1.85

2.13

2.41

2.69

N
um

be
r

of
to

ta
lF

lo
ps

(F
T-

G
M

R
E

S
)×108

(c) Faulting with:

hi,j = hi,j × ||A||2 × 10150, δg = 0.9

1 5 10 15 20 25
Iteration (Index) j→

1

5

10

15

20

25

←
Ite

ra
tio

n
(I

nd
ex

)
i

No Fa
ult

ing

Flops w.o. Faulting:
1.726×108

Number of Flops with and without Faulting
(Pseudo Hessenberg Matrix H̃(i, j))

1.73

1.99

2.24

2.50

2.75

N
um

be
r

of
to

ta
lF

lo
ps

(F
T-

G
M

R
E

S
)×108

(d) Faulting with:

hi,j = hi,j × ||A||2 × 10150, δg = 0.5

Figure 90 Number of flops for a single fault on a specific position during orthogonalization (hi,j)

of the inner solver with flexible preconditioning while solving the adder_dcop_63 matrix.

As in section 9.6.4 flexible preconditioning is also applied in figure 90 during solving the

adder_dcop_63 matrix. The inner solver of the FT-GMRES does at least 5 but at most 35 itera-

tions (m2). In figure 90 always the same error is induced for a single fault but the value of δg

(δg = 1− ||σj ||22
||σ0||22

) is changed, if this value is achieved during preconditioning of the inner solver then

this solver is stopped and the outer solver is allowed to continue. The worst overhead (≈ 15 - 70

%) does not remain the same and the total number of flops is different for each different value of δg
without faulting. In this case flexible preconditioning mainly helps to decrease the needed number

of flops without faulting. The accuracy (||r||2 = ||Ax− b||2/||b||2) is below 10−9 for all computations.

Experimental Studies on FT-GMRES Page 137 of 226

9.6.14 Number of flops for solving the adder_dcop_63 problem with flexible precondi-

tioning by the inner solver and faulting - Inner solver initialized with zero values

1 5 10 15 20 25
Iteration (Index) j→

1

5

10

15

20

25

←
Ite

ra
tio

n
(I

nd
ex

)
i

No Fa
ult

ing

Flops w.o. Faulting:
1.638×108

Number of Flops with and without Faulting
(Pseudo Hessenberg Matrix H̃(i, j))

1.64

1.88

2.13

2.37

2.61

N
um

be
r

of
to

ta
lF

lo
ps

(F
T-

G
M

R
E

S
)×108

(a) Faulting with:

hi,j = hi,j × ||A||2 × 10150, δg = 1.00

1 5 10 15 20 25
Iteration (Index) j→

1

5

10

15

20

25

←
Ite

ra
tio

n
(I

nd
ex

)
i

No Fa
ult

ing

Flops w.o. Faulting:
1.537×108

Number of Flops with and without Faulting
(Pseudo Hessenberg Matrix H̃(i, j))

1.54

1.82

2.11

2.39

2.67

N
um

be
r

of
to

ta
lF

lo
ps

(F
T-

G
M

R
E

S
)×108

(b) Faulting with:

hi,j = hi,j × ||A||2 × 10150, δg = 0.95

1 5 10 15 20 25
Iteration (Index) j→

1

5

10

15

20

25

←
Ite

ra
tio

n
(I

nd
ex

)
i

No Fa
ult

ing

Flops w.o. Faulting:
1.566×108

Number of Flops with and without Faulting
(Pseudo Hessenberg Matrix H̃(i, j))

1.57

1.85

2.13

2.41

2.69

N
um

be
r

of
to

ta
lF

lo
ps

(F
T-

G
M

R
E

S
)×108

(c) Faulting with:

hi,j = hi,j × ||A||2 × 10150, δg = 0.9

1 5 10 15 20 25
Iteration (Index) j→

1

5

10

15

20

25

←
Ite

ra
tio

n
(I

nd
ex

)
i

No Fa
ult

ing

Flops w.o. Faulting:
1.726×108

Number of Flops with and without Faulting
(Pseudo Hessenberg Matrix H̃(i, j))

1.73

2.08

2.43

2.78

3.13

N
um

be
r

of
to

ta
lF

lo
ps

(F
T-

G
M

R
E

S
)×108

(d) Faulting with:

hi,j = hi,j × ||A||2 × 10150, δg = 0.5

Figure 91 Number of flops for a single fault on a specific position during orthogonalization (hi,j)

of the inner solver with flexible preconditioning while solving the adder_dcop_63 matrix.

As in section 9.6.4 flexible preconditioning is also applied in figure 91 during solving the

adder_dcop_63 matrix. The inner solver of the FT-GMRES does at least 1 but at most 35 itera-

tions (m2). In figure 91 always the same error is induced for a single fault but the value of δg

(δg = 1− ||σj ||22
||σ0||22

) is changed, if this value is achieved during preconditioning of the inner solver then

this solver is stopped and the outer solver is allowed to continue. The worst overhead (≈ 15 - 70

%) does not remain the same and the total number of flops is different for each different value of δg
without faulting. In this case flexible preconditioning mainly helps to decrease the needed number

of flops without faulting. The accuracy (||r||2 = ||Ax− b||2/||b||2) is below 10−9 for all computations.

Experimental Studies on FT-GMRES Page 138 of 226

9.6.15 Further experiments for solving the 2D Poisson and adder_dcop_63 problem with

flexible preconditioning and faulting - Inner solver initialized with zero values

1 5 10 15 20 25
Iteration (Index) j→

1

5

10

15

20

25

←
Ite

ra
tio

n
(I

nd
ex

)
i

No Fa
ult

ing

Flops w.o. Faulting:
2.076×108

Number of Flops with and without Faulting
(Pseudo Hessenberg Matrix H̃(i, j))

2.08

2.33

2.58

2.83

3.08

N
um

be
r

of
to

ta
lF

lo
ps

(F
T-

G
M

R
E

S
)×108

(a) 2D Poisson matrix,

faulting with:

hi,j = hi,j × ||A||2 × 1010, δg = 0.95

1 5 10 15 20 25
Iteration (Index) j→

1

5

10

15

20

25

←
Ite

ra
tio

n
(I

nd
ex

)
i

No Fa
ult

ing

Flops w.o. Faulting:
2.076×108

Number of Flops with and without Faulting
(Pseudo Hessenberg Matrix H̃(i, j))

2.08

2.35

2.62

2.89

3.16

N
um

be
r

of
to

ta
lF

lo
ps

(F
T-

G
M

R
E

S
)×108

(b) 2D Poisson matrix,

faulting with:

hi,j = hi,j × ||A||2 × 1050, δg = 0.95

1 5 10 15 20 25
Iteration (Index) j→

1

5

10

15

20

25

←
Ite

ra
tio

n
(I

nd
ex

)
i

No Fa
ult

ing

Flops w.o. Faulting:
1.537×108

Number of Flops with and without Faulting
(Pseudo Hessenberg Matrix H̃(i, j))

1.54

1.63

1.72

1.80

1.89

N
um

be
r

of
to

ta
lF

lo
ps

(F
T-

G
M

R
E

S
)×108

(c) adder_dcop_63 matrix,

faulting with:

hi,j = hi,j × ||A||2 × 1010, δg = 0.95

1 5 10 15 20 25
Iteration (Index) j→

1

5

10

15

20

25

←
Ite

ra
tio

n
(I

nd
ex

)
i

No Fa
ult

ing

Flops w.o. Faulting:
1.537×108

Number of Flops with and without Faulting
(Pseudo Hessenberg Matrix H̃(i, j))

1.54

1.74

1.94

2.14

2.34

N
um

be
r

of
to

ta
lF

lo
ps

(F
T-

G
M

R
E

S
)×108

(d) adder_dcop_63 matrix,

faulting with:

hi,j = hi,j × ||A||2 × 1050, δg = 0.95

Figure 92 Further experiments for solving the 2D Poisson and adder_dcop_63 problem with ap-

plying flexible preconditioning by the inner solver of the FT-GMRES in the presence of a fault.

As in section 9.6.9 and 9.6.14 the 2D Poisson and adder_dcop_63 problem is solved in figure

92 with applying flexible preconditioning by the inner solver of the FT-GMRES. The inner solver

of the FT-GMRES does at least 1 but at most 35 iterations (m2). If a specific value of δg = 0.95

is achieved during preconditioning the inner solver is stopped and the outer solver is allowed to

proceed. Figure 92 mainly shows that larger faults in the inner solver of the FT-GMRES lead to

more operations (from figure 92a to 92b and from figure 92c to 92d) to negate the effect of poor

preconditioning. The relative residuum (||r||2 = ||Ax−b||2/||b||2) is below 10−9 for all computations.

Experimental Studies on FT-GMRES Page 139 of 226

9.6.16 Some notes on the flexible preconditioning with/without faulting

The main outcome is that flexible preconditioning helps to decrease the needed number of opera-

tions without a fault but it is not ensured that in the case of fault also a low number of operations is

achieved. It is possible to reduce the total number of flops massively for the F-GMRES solver like

in section 9.6.3 shown for the 2D Poisson and adder_dcop_63 matrix with applying flexible precon-

ditioning for the inner solver of the F-GMRES. In most cases seen so far the F-GMRES needs less

operations with observing the accuracy of the solution vector wj where unnecessary iterations (m2)

and work for the inner solver of the F-GMRES are avoided in contrast to the standard case where

only (right) preconditioning is applied with a fixed number of inner iterations (m2). The problem is

just to find optimal parameters such that the F-GMRES solver needs the lowest possible number of

operations (flops) to converge to a specific residuum or to the same residuum as in the case where

only (right) preconditioning is applied.

Overall observing the accuracy of the solution vector wj in the inner solver of the F-GMRES

(line 4 of algorithm 11) seems to be a good approach to avoid a large number of operations for the

inner solver (m2) where unnecessary work is done. The optimal parameters which are searched

for flexible preconditioning are the smallest and greatest number of inner iterations (m2) but also

the value of δg which measures the linear in-dependency of two residual vectors (δg = 1− ||σj ||22
||σ0||22

) or

the accuracy ε2 for the solution vector wj of the inner solver (||(qj+1−Awj+1)||2/||qj+1||2 ≤ ε2). It is

far away of being obvious to find these optimal parameters such that the lowest possible number of

operations is achieved but like said the inner solver of the F(T)-GMRES should do the most work.

The FT-GMRES can cope with different kinds of faults if flexible preconditioning is applied but

the real overhead can be hidden in number of operations (flops) by the inner solver because in

some cases the outer solver achieves the same number of outer iterations (m1) with and without

a fault whereas more work and more operations are done by the inner solver in the presence of a

fault. The result is just that in the case of flexible preconditioning with a fault in the inner solver

a similar overhead in the number of flops occurs as in the case without flexible preconditioning

where the overhead appears in number of outer iterations (m1). This is mainly shown in section

9.6.9 and 9.6.14 where nearly no overhead for the number of outer iterations is achieved but the

number of total flops for FT-GMRES solver can be really high because of additional operations of

the inner solver in the presence of a single fault.

Furthermore the cost (flops) of a fault in the inner solver of the FT-GMRES can be high which

means that the inner solver of the FT-GMRES will always try to negate the effect of a fault but a

fault will always lead to more operations (more outer or/and inner iterations). In the case of solving

the 2D Poisson problem with flexible preconditioning and in the presence of a single fault the worst

overhead (≈ 10 - 80 %) can be sometimes really high but the average overhead is about 25 % like

in the case of solving the adder_dcop_63 problem where for this problem the average overhead is

around 20 %. Hence without flexible preconditioning (right preconditioning) a similar overhead of

about 15 % can be observed in the case of solving the adder_dcop_63 problem whereas for solving

the 2D Poisson problem a worst overhead of 36 % is observed.

The contrast is mainly owed how the overhead is estimated (flops vs number of outer itera-

tions) and because of flexible preconditioning. There are also some outliers which cause this huge

overhead mainly for solving these two problems. The outcome is this approach with flexible pre-

conditioning mainly helps to decrease the needed number of operations without a fault whereas

in the case of a single fault in the inner solver of the FT-GMRES a similar overhead as in the case

without flexible preconditioning (right preconditioning) can occur or even higher. More aggressive

preconditioning (lower values of δg) leads to more overhead, for more examples see section 9.10.

Experimental Studies on FT-GMRES Page 140 of 226

9.7 Results of some experiments (worst overhead) with the corresponding
matrix properties

This section mainly summarizes the results of some experiments for different kinds of matrices

[10] in table 6 which shows the worst overhead for different kinds of faults (10150 and 10−300). The

first part of this table is about the worst overhead for solving the 2D Poisson and adder_dcop_63

matrix whereas the second part shows the worst overhead in the presence of a single fault for other

matrices which are discussed in this work but as well not. The methodology for all experiments is

the same as in section 12. It also sums up some important properties like the condition number and

the number of outer iterations (m1) without a fault to solve the problem of Ax = b and to converge

to the same relative residuum as in the presence of a single fault. These huge overheads can occur

because of stagnating convergence, after a specific accuracy the solver gets significant slower.

Name ||A||2 Residuum (||r||2) Iterations κ(A)2 Overhead in %

2D Poisson 7.9014 10−9 10 6.02× 103 36%

adder_dcop_63 1.1743 10−9 32 5.6107× 103 15%

Pres_Poisson 26.0289 10−6 30 2.03665× 106 6.5%

Kuu 54.0821 10−9 25 15758 15%

Na5 25.6604 10−9 20 1212.23 19%

circuit_2 26.387 10−9 28 131925 14%

mult_dcop_03 17.1762 10−9 45 7.27261× 1013 9%

chem_master1 4.3071× 103 10−5.5 28 4.42× 103 21%

ILL_Stokes 5.44287 10−6 23 2.25289× 109 12.5%

bcircuit 4.4662× 104 10−4.5 21 2.2087× 109 18%

cavity06 15.7727 10−4.5 30 672940 16%

cavity17 13.0849 10−6 37 9.35083× 106 16%

Chebyshev2 20277.2 10−5 89 5.54075× 1015 166%

ebp1 0.208272 10−10.5 30 5940.66 3%

fpga_dcop_03 12.284 10−5 41 1.84648× 1013 33%

garon2 44.8683 10−5.5 20 6.12558× 107 9.5%

init_adder1 1.01806 10−9 41 3.2654× 107 72.5%

juba40k 1.0× 1012 10−5.5 20 Inf 43%

k3plates 1.99511× 1010 10−6 44 1.50352× 1018 4%

light_in_tissue 2.66355 10−7 12 7821.9 77%

msc01050 2.10× 107 10−6 32 4.5826× 1015 58%

nasa2910 77.6164 10−4 8 9.5271× 1064 11%

nos2 1.57283× 1011 10−6 34 5.09958× 109 11%

plat362 0.774279 10−6 21 2.17822× 1011 36%

pores_2 6.08895× 107 10−4 66 1.09429× 108 150%

qh1484 1.25679× 1016 10−4 89 1.04449× 1018 116%

raefsky2 3.72481 10−9 26 4251.948 7%

raefsky6 3.97745× 1014 10−9 51 1.41323× 1016 7%

rajat19 10.9106 10−5 49 1.09106× 1010 300%

shyy161 62.6441 10−4.5 10 8.23× 10266 54%

SiNa 25.6159 10−9 17 507.117 22%

wang3 0.268008 10−9 12 6188.12 23%

sherman2 2.43842× 109 10−4.5 272 9.64333× 1011 8%

xenon1 5.2875× 1028 10−9 36 1.6747× 105 6%

Table 6 Worst overhead for a single fault and various disturbances for solving different matrices.

For all experiments the inner solver of the FT-GMRES is initialized with zeros for vector wj(w0).

Experimental Studies on FT-GMRES Page 141 of 226

https://en.wikipedia.org/wiki/Discrete_Poisson_equation
http://www.cise.ufl.edu/research/sparse/matrices/Sandia/adder_dcop_63.html
http://www.cise.ufl.edu/research/sparse/matrices/ACUSIM/Pres_Poisson.html
http://www.cise.ufl.edu/research/sparse/matrices/MathWorks/Kuu.html
http://www.cise.ufl.edu/research/sparse/matrices/PARSEC/Na5.html
http://www.cise.ufl.edu/research/sparse/matrices/Bomhof/circuit_2.html
http://www.cise.ufl.edu/research/sparse/matrices/Sandia/mult_dcop_03.html
http://www.cise.ufl.edu/research/sparse/matrices/Watson/chem_master1.html
http://www.cise.ufl.edu/research/sparse/matrices/Szczerba/Ill_Stokes.html
http://www.cise.ufl.edu/research/sparse/matrices/Hamm/bcircuit.html
http://www.cise.ufl.edu/research/sparse/matrices/DRIVCAV/cavity06.html
http://www.cise.ufl.edu/research/sparse/matrices/DRIVCAV/cavity17.html
http://www.cise.ufl.edu/research/sparse/matrices/Muite/Chebyshev2.html
http://www.cise.ufl.edu/research/sparse/matrices/Averous/epb1.html
http://www.cise.ufl.edu/research/sparse/matrices/Sandia/fpga_dcop_03.html
http://www.cise.ufl.edu/research/sparse/matrices/Garon/garon2.html
http://www.cise.ufl.edu/research/sparse/matrices/Sandia/init_adder1.html
http://www.cise.ufl.edu/research/sparse/matrices/Rommes/juba40k.html
http://www.cise.ufl.edu/research/sparse/matrices/Cunningham/k3plates.html
http://www.cise.ufl.edu/research/sparse/matrices/Dehghani/light_in_tissue.html
http://www.cise.ufl.edu/research/sparse/matrices/Boeing/msc01050.html
http://www.cise.ufl.edu/research/sparse/matrices/Boeing/nasa2910.html
http://www.cise.ufl.edu/research/sparse/matrices/HB/nos2.html
http://www.cise.ufl.edu/research/sparse/matrices/HB/plat362.html
http://www.cise.ufl.edu/research/sparse/matrices/HB/pores_2.html
http://www.cise.ufl.edu/research/sparse/matrices/Bai/qh1484.html
http://www.cise.ufl.edu/research/sparse/matrices/Simon/raefsky2.html
http://www.cise.ufl.edu/research/sparse/matrices/Simon/raefsky6.html
http://www.cise.ufl.edu/research/sparse/matrices/Rajat/rajat19.html
http://www.cise.ufl.edu/research/sparse/matrices/Shyy/shyy161.html
http://www.cise.ufl.edu/research/sparse/matrices/PARSEC/SiNa.html
http://www.cise.ufl.edu/research/sparse/matrices/Wang/wang3.html
http://www.cise.ufl.edu/research/sparse/matrices/HB/sherman2.html
http://www.cise.ufl.edu/research/sparse/matrices/Ronis/xenon1.html

9.8 Faulting with single faults while solving further problems (symmetric,
unsymmetric)

9.8.1 Faulting during solving the 2D Poisson problem for different kinds of faults (sym-

metric problem) - Inner solver initialized with zero values

1 5 10 15 20 25
Iteration (Index) j→

1

5

10

15

20

25

←
Ite

ra
tio

n
(I

nd
ex

)
i

No Fa
ult

ing

Iterations w.o. Faulting:10

Number of Outer Iterations with and without Faulting
(Pseudo Hessenberg Matrix H̄(i, j))

10

11

12

13

14

15

N
um

be
r

of
O

ut
er

Ite
ra

tio
ns

(m
1)

(a) Faulting with:

hi,j = hi,j × ||A||2 × 10150

1 5 10 15 20 25
Iteration (Index) j→

1

5

10

15

20

25

←
Ite

ra
tio

n
(I

nd
ex

)
i

No Fa
ult

ing

Iterations w.o. Faulting:10

Number of Outer Iterations with and without Faulting
(Pseudo Hessenberg Matrix H̄(i, j))

10

11

12

N
um

be
r

of
O

ut
er

Ite
ra

tio
ns

(m
1)

(b) Faulting with:

hi,j = hi,j × ||A||2 × 10−300

1 5 10 15 20 25
Iteration (Index) j→

1

5

10

15

20

25

←
Ite

ra
tio

n
(I

nd
ex

)
i

No Fa
ult

ing

Iterations w.o. Faulting:10

Number of Outer Iterations with and without Faulting
(Pseudo Hessenberg Matrix H̄(i, j))

10

11

12

13

N
um

be
r

of
O

ut
er

Ite
ra

tio
ns

(m
1)

(c) Faulting with:

hi,j = hi,j × ||A||2 × 1010

1 5 10 15 20 25
Iteration (Index) j→

1

5

10

15

20

25

←
Ite

ra
tio

n
(I

nd
ex

)
i

No Fa
ult

ing

Iterations w.o. Faulting:10

Number of Outer Iterations with and without Faulting
(Pseudo Hessenberg Matrix H̄(i, j))

10

11

12

N
um

be
r

of
O

ut
er

Ite
ra

tio
ns

(m
1)

(d) Faulting with:

hi,j = hi,j × ||A||2 × 10−0.5

Figure 93 Number of outer iterations for a single fault during orthogonalization (hi,j) and for

various disturbances while solving the 2D Poisson matrix (, compare with figure 158).

In figure 93 the 2D Poisson matrix is solved and as well faulting during orthogonalization (hi,j)

of the inner solver is shown. The F(T)-GMRES takes 10 outer iterations (m1) without a fault and

for the first trial whereas in the worst case 15 outer iterations (m1) are needed in the presence of a

single fault such that the according overhead is about 36 % (15/11). For each trial and computation

the relative residuum (||r||2 = ||Ax− b||2)/||b||2) is below 10−9, a symmetric problem is solved.

Experimental Studies on FT-GMRES Page 142 of 226

9.8.2 Faulting during solving the Pres_Poisson problem for different kinds of faults (sym-

metric problem) - Inner solver initialized with zero values

1 5 10 15 20 25
Iteration (Index) j→

1

5

10

15

20

25

←
Ite

ra
tio

n
(I

nd
ex

)
i

No Fa
ult

ing

Iterations w.o. Faulting:30

Number of Outer Iterations with and without Faulting
(Pseudo Hessenberg Matrix H̄(i, j))

30

31

32

33

N
um

be
r

of
O

ut
er

Ite
ra

tio
ns

(m
1)

(a) Faulting with:

hi,j = hi,j × ||A||2 × 10150

1 5 10 15 20 25
Iteration (Index) j→

1

5

10

15

20

25

←
Ite

ra
tio

n
(I

nd
ex

)
i

No Fa
ult

ing

Iterations w.o. Faulting:30

Number of Outer Iterations with and without Faulting
(Pseudo Hessenberg Matrix H̄(i, j))

30

31

32

N
um

be
r

of
O

ut
er

Ite
ra

tio
ns

(m
1)

(b) Faulting with:

hi,j = hi,j × ||A||2 × 10−300

1 5 10 15 20 25
Iteration (Index) j→

1

5

10

15

20

25

←
Ite

ra
tio

n
(I

nd
ex

)
i

No Fa
ult

ing

Iterations w.o. Faulting:30

Number of Outer Iterations with and without Faulting
(Pseudo Hessenberg Matrix H̄(i, j))

30

31

32

N
um

be
r

of
O

ut
er

Ite
ra

tio
ns

(m
1)

(c) Faulting with:

hi,j = hi,j × ||A||2 × 1010

1 5 10 15 20 25
Iteration (Index) j→

1

5

10

15

20

25

←
Ite

ra
tio

n
(I

nd
ex

)
i

No Fa
ult

ing

Iterations w.o. Faulting:30

Number of Outer Iterations with and without Faulting
(Pseudo Hessenberg Matrix H̄(i, j))

30

31

32

N
um

be
r

of
O

ut
er

Ite
ra

tio
ns

(m
1)

(d) Faulting with:

hi,j = hi,j × ||A||2 × 10−0.5

Figure 94 Number of outer iterations for a single fault during orthogonalization (hi,j) and for

various disturbances while solving the Pres_Poisson matrix (, compare with figure 159).

In figure 94 the Pres_Poisson matrix is solved and as well faulting during orthogonalization (hi,j)

of the inner solver is shown. The F(T)-GMRES takes 30 outer iterations (m1) without a fault and

for the first trial whereas in the worst case 33 outer iterations (m1) are needed in the presence of a

single fault such that the according overhead is about 6.5 % (33/31). For each trial and computation

the relative residuum (||r||2 = ||Ax−b||2)/||b||2) is below 10−6. In the case of the Pres_Poisson matrix

the F(T)-GMRES solves a symmetric problem.

Experimental Studies on FT-GMRES Page 143 of 226

9.8.3 Faulting during solving the Kuu problem for different kinds of faults (symmetric

problem) - Inner solver initialized with zero values

1 5 10 15 20 25
Iteration (Index) j→

1

5

10

15

20

25

←
Ite

ra
tio

n
(I

nd
ex

)
i

No Fa
ult

ing

Iterations w.o. Faulting:25

Number of Outer Iterations with and without Faulting
(Pseudo Hessenberg Matrix H̄(i, j))

25

26

27

28

29

N
um

be
r

of
O

ut
er

Ite
ra

tio
ns

(m
1)

(a) Faulting with:

hi,j = hi,j × ||A||2 × 10150

1 5 10 15 20 25
Iteration (Index) j→

1

5

10

15

20

25

←
Ite

ra
tio

n
(I

nd
ex

)
i

No Fa
ult

ing

Iterations w.o. Faulting:25

Number of Outer Iterations with and without Faulting
(Pseudo Hessenberg Matrix H̄(i, j))

25

26

27

N
um

be
r

of
O

ut
er

Ite
ra

tio
ns

(m
1)

(b) Faulting with:

hi,j = hi,j × ||A||2 × 10−300

1 5 10 15 20 25
Iteration (Index) j→

1

5

10

15

20

25

←
Ite

ra
tio

n
(I

nd
ex

)
i

No Fa
ult

ing

Iterations w.o. Faulting:25

Number of Outer Iterations with and without Faulting
(Pseudo Hessenberg Matrix H̄(i, j))

25

26

27

28

29

30

N
um

be
r

of
O

ut
er

Ite
ra

tio
ns

(m
1)

(c) Faulting with:

hi,j = hi,j × ||A||2 × 1010

1 5 10 15 20 25
Iteration (Index) j→

1

5

10

15

20

25

←
Ite

ra
tio

n
(I

nd
ex

)
i

No Fa
ult

ing

Iterations w.o. Faulting:25

Number of Outer Iterations with and without Faulting
(Pseudo Hessenberg Matrix H̄(i, j))

25

26

27

28

N
um

be
r

of
O

ut
er

Ite
ra

tio
ns

(m
1)

(d) Faulting with:

hi,j = hi,j × ||A||2 × 10−0.5

Figure 95 Number of outer iterations for a single fault during orthogonalization (hi,j) and for

various disturbances while solving the Kuu matrix (, compare with figure 160).

In figure 95 the Kuu matrix is solved and as well faulting during orthogonalization (hi,j) of the

inner solver is shown. The F(T)-GMRES takes 25 outer iterations (m1) without a fault and for the

first trial whereas in the worst case 30 outer iterations (m1) are needed in the presence of a single

fault such that the according overhead is about 15 % (30/26). For each trial and computation

the relative residuum (||r||2 = ||Ax − b||2)/||b||2) is below 10−9. In the case of the Kuu matrix the

F(T)-GMRES solves a symmetric problem.

Experimental Studies on FT-GMRES Page 144 of 226

9.8.4 Faulting during solving the Na5 problem for different kinds of faults (symmetric

problem) - Inner solver initialized with zero values

1 5 10 15 20 25
Iteration (Index) j→

1

5

10

15

20

25

←
Ite

ra
tio

n
(I

nd
ex

)
i

No Fa
ult

ing

Iterations w.o. Faulting:20

Number of Outer Iterations with and without Faulting
(Pseudo Hessenberg Matrix H̄(i, j))

20

21

22

23

24

N
um

be
r

of
O

ut
er

Ite
ra

tio
ns

(m
1)

(a) Faulting with:

hi,j = hi,j × ||A||2 × 10150

1 5 10 15 20 25
Iteration (Index) j→

1

5

10

15

20

25

←
Ite

ra
tio

n
(I

nd
ex

)
i

No Fa
ult

ing

Iterations w.o. Faulting:20

Number of Outer Iterations with and without Faulting
(Pseudo Hessenberg Matrix H̄(i, j))

20

21

22

23

N
um

be
r

of
O

ut
er

Ite
ra

tio
ns

(m
1)

(b) Faulting with:

hi,j = hi,j × ||A||2 × 10−300

1 5 10 15 20 25
Iteration (Index) j→

1

5

10

15

20

25

←
Ite

ra
tio

n
(I

nd
ex

)
i

No Fa
ult

ing

Iterations w.o. Faulting:20

Number of Outer Iterations with and without Faulting
(Pseudo Hessenberg Matrix H̄(i, j))

20

21

22

23

24

N
um

be
r

of
O

ut
er

Ite
ra

tio
ns

(m
1)

(c) Faulting with:

hi,j = hi,j × ||A||2 × 1010

1 5 10 15 20 25
Iteration (Index) j→

1

5

10

15

20

25

←
Ite

ra
tio

n
(I

nd
ex

)
i

No Fa
ult

ing

Iterations w.o. Faulting:20

Number of Outer Iterations with and without Faulting
(Pseudo Hessenberg Matrix H̄(i, j))

20

21

22

23

24

25

N
um

be
r

of
O

ut
er

Ite
ra

tio
ns

(m
1)

(d) Faulting with:

hi,j = hi,j × ||A||2 × 10−0.5

Figure 96 Number of outer iterations for a single fault during orthogonalization (hi,j) and for

various disturbances while solving the Na5 matrix (, compare with figure 161).

In figure 96 the Na5 matrix is solved and as well faulting during orthogonalization (hi,j) of the

inner solver is shown. The F(T)-GMRES takes 20 outer iterations (m1) without a fault and for the

first trial whereas in the worst case 25 outer iterations (m1) are needed in the presence of a single

fault such that the according overhead is about 19 % (25/21). For each trial and computation

the relative residuum (||r||2 = ||Ax − b||2)/||b||2) is below 10−9. In the case of the Na5 matrix the

F(T)-GMRES solves a symmetric problem.

Experimental Studies on FT-GMRES Page 145 of 226

9.8.5 Faulting during solving the adder_dcop_63 problem for different kinds of faults

(un-symmetric problem) - Inner solver initialized with zero values

1 5 10 15 20 25
Iteration (Index) j→

1

5

10

15

20

25

←
Ite

ra
tio

n
(I

nd
ex

)
i

No Fa
ult

ing

Iterations w.o. Faulting:32

Number of Outer Iterations with and without Faulting
(Pseudo Hessenberg Matrix H̄(i, j))

32

33

34

35

36

37

38

N
um

be
r

of
O

ut
er

Ite
ra

tio
ns

(m
1)

(a) Faulting with:

hi,j = hi,j × ||A||2 × 10150

1 5 10 15 20 25
Iteration (Index) j→

1

5

10

15

20

25

←
Ite

ra
tio

n
(I

nd
ex

)
i

No Fa
ult

ing

Iterations w.o. Faulting:32

Number of Outer Iterations with and without Faulting
(Pseudo Hessenberg Matrix H̄(i, j))

32

33

34

N
um

be
r

of
O

ut
er

Ite
ra

tio
ns

(m
1)

(b) Faulting with:

hi,j = hi,j × ||A||2 × 10−300

1 5 10 15 20 25
Iteration (Index) j→

1

5

10

15

20

25

←
Ite

ra
tio

n
(I

nd
ex

)
i

No Fa
ult

ing

Iterations w.o. Faulting:32

Number of Outer Iterations with and without Faulting
(Pseudo Hessenberg Matrix H̄(i, j))

32

33

34

35

N
um

be
r

of
O

ut
er

Ite
ra

tio
ns

(m
1)

(c) Faulting with:

hi,j = hi,j × ||A||2 × 1010

1 5 10 15 20 25
Iteration (Index) j→

1

5

10

15

20

25

←
Ite

ra
tio

n
(I

nd
ex

)
i

No Fa
ult

ing

Iterations w.o. Faulting:32

Number of Outer Iterations with and without Faulting
(Pseudo Hessenberg Matrix H̄(i, j))

32

33

34

N
um

be
r

of
O

ut
er

Ite
ra

tio
ns

(m
1)

(d) Faulting with:

hi,j = hi,j × ||A||2 × 10−0.5

Figure 97 Number of outer iterations for a single fault during orthogonalization (hi,j) and for

various disturbances while solving the adder_dcop_63 matrix (, compare with figure 162).

In figure 97 the adder_dcop_63 matrix is solved and as well faulting during orthogonalization

(hi,j) of the inner solver is shown. The F(T)-GMRES takes 32 outer iterations (m1) without a fault

and for the first trial whereas in the worst case 38 outer iterations (m1) are needed in the pres-

ence of a single fault such that the according overhead is about 15 % (38/33). For each trial and

computation the relative residuum (||r||2 = ||Ax − b||2)/||b||2) is below 10−9. In the case of the

adder_dcop_63 matrix the F(T)-GMRES solves a un-symmetric problem.

Experimental Studies on FT-GMRES Page 146 of 226

9.8.6 Faulting during solving the circuit_2 problem for different kinds of faults (un-

symmetric problem) - Inner solver initialized with zero values

1 5 10 15 20 25
Iteration (Index) j→

1

5

10

15

20

25

←
Ite

ra
tio

n
(I

nd
ex

)
i

No Fa
ult

ing

Iterations w.o. Faulting:28

Number of Outer Iterations with and without Faulting
(Pseudo Hessenberg Matrix H̄(i, j))

28

29

30

N
um

be
r

of
O

ut
er

Ite
ra

tio
ns

(m
1)

(a) Faulting with:

hi,j = hi,j × ||A||2 × 10150

1 5 10 15 20 25
Iteration (Index) j→

1

5

10

15

20

25

←
Ite

ra
tio

n
(I

nd
ex

)
i

No Fa
ult

ing

Iterations w.o. Faulting:28

Number of Outer Iterations with and without Faulting
(Pseudo Hessenberg Matrix H̄(i, j))

28

29

30

31

32

33

N
um

be
r

of
O

ut
er

Ite
ra

tio
ns

(m
1)

(b) Faulting with:

hi,j = hi,j × ||A||2 × 10−300

1 5 10 15 20 25
Iteration (Index) j→

1

5

10

15

20

25

←
Ite

ra
tio

n
(I

nd
ex

)
i

No Fa
ult

ing

Iterations w.o. Faulting:28

Number of Outer Iterations with and without Faulting
(Pseudo Hessenberg Matrix H̄(i, j))

28

29

30

N
um

be
r

of
O

ut
er

Ite
ra

tio
ns

(m
1)

(c) Faulting with:

hi,j = hi,j × ||A||2 × 1010

1 5 10 15 20 25
Iteration (Index) j→

1

5

10

15

20

25

←
Ite

ra
tio

n
(I

nd
ex

)
i

No Fa
ult

ing

Iterations w.o. Faulting:28

Number of Outer Iterations with and without Faulting
(Pseudo Hessenberg Matrix H̄(i, j))

28

29

30

31

N
um

be
r

of
O

ut
er

Ite
ra

tio
ns

(m
1)

(d) Faulting with:

hi,j = hi,j × ||A||2 × 10−0.5

Figure 98 Number of outer iterations for a single fault during orthogonalization (hi,j) and for

various disturbances while solving the circuit_2 matrix (, compare with figure 163).

In figure 98 the circuit_2 matrix is solved and as well faulting during orthogonalization (hi,j) of

the inner solver is shown. The F(T)-GMRES takes 28 outer iterations without a fault and for the

first trial whereas in the worst case 33 outer iterations (m1) are needed in the presence of a single

fault such that the according overhead is about 14 % (33/29). For each trial and computation the

relative residuum (||r||2 = ||Ax − b||2)/||b||2) is below 10−9. In the case of the circuit_2 matrix the

F(T)-GMRES solves an un-symmetric problem.

Experimental Studies on FT-GMRES Page 147 of 226

9.8.7 Faulting during solving the mult_dcop_03 problem for different kinds of faults (un-

symmetric problem) - Inner solver initialized with zero values

1 5 10 15 20 25
Iteration (Index) j→

1

5

10

15

20

25

←
Ite

ra
tio

n
(I

nd
ex

)
i

No Fa
ult

ing

Iterations w.o. Faulting:45

Number of Outer Iterations with and without Faulting
(Pseudo Hessenberg Matrix H̄(i, j))

45

46

47

48

49

N
um

be
r

of
O

ut
er

Ite
ra

tio
ns

(m
1)

(a) Faulting with:

hi,j = hi,j × ||A||2 × 10150

1 5 10 15 20 25
Iteration (Index) j→

1

5

10

15

20

25

←
Ite

ra
tio

n
(I

nd
ex

)
i

No Fa
ult

ing

Iterations w.o. Faulting:45

Number of Outer Iterations with and without Faulting
(Pseudo Hessenberg Matrix H̄(i, j))

45

46

47

48

49

N
um

be
r

of
O

ut
er

Ite
ra

tio
ns

(m
1)

(b) Faulting with:

hi,j = hi,j × ||A||2 × 10−300

1 5 10 15 20 25
Iteration (Index) j→

1

5

10

15

20

25

←
Ite

ra
tio

n
(I

nd
ex

)
i

No Fa
ult

ing

Iterations w.o. Faulting:45

Number of Outer Iterations with and without Faulting
(Pseudo Hessenberg Matrix H̄(i, j))

45

46

47

N
um

be
r

of
O

ut
er

Ite
ra

tio
ns

(m
1)

(c) Faulting with:

hi,j = hi,j × ||A||2 × 1010

1 5 10 15 20 25
Iteration (Index) j→

1

5

10

15

20

25

←
Ite

ra
tio

n
(I

nd
ex

)
i

No Fa
ult

ing

Iterations w.o. Faulting:45

Number of Outer Iterations with and without Faulting
(Pseudo Hessenberg Matrix H̄(i, j))

45

46

47

48

49

50

N
um

be
r

of
O

ut
er

Ite
ra

tio
ns

(m
1)

(d) Faulting with:

hi,j = hi,j × ||A||2 × 10−0.5

Figure 99 Number of outer iterations for a single fault during orthogonalization (hi,j) and for

various disturbances while solving the mult_dcop_03 matrix (, compare with figure 164).

In figure 99 the mult_dcop_03 matrix is solved and as well faulting during orthogonalization

(hi,j) of the inner solver is shown. The F(T)-GMRES takes 45 outer iterations without a fault and

for the first trial whereas in the worst case 50 outer iterations (m1) are needed in the presence of a

single fault such that the according overhead is about 9 % (50/46). For each trial and computation

the relative residuum (||r||2 = ||Ax − b||2)/||b||2) is below 10−9. In the case of the mult_dcop_03

matrix the F(T)-GMRES solves an un-symmetric problem.

Experimental Studies on FT-GMRES Page 148 of 226

9.8.8 Faulting during solving the chem_master1 problem for different kinds of faults

(un-symmetric problem) - Inner solver initialized with zero values.

1 5 10 15 20 25
Iteration (Index) j→

1

5

10

15

20

25

←
Ite

ra
tio

n
(I

nd
ex

)
i

No Fa
ult

ing

Iterations w.o. Faulting:28

Number of Outer Iterations with and without Faulting
(Pseudo Hessenberg Matrix H̄(i, j))

28

29

30

31

32

33

34

35

N
um

be
r

of
O

ut
er

Ite
ra

tio
ns

(m
1)

(a) Faulting with:

hi,j = hi,j × ||A||2 × 10150

1 5 10 15 20 25
Iteration (Index) j→

1

5

10

15

20

25

←
Ite

ra
tio

n
(I

nd
ex

)
i

No Fa
ult

ing

Iterations w.o. Faulting:28

Number of Outer Iterations with and without Faulting
(Pseudo Hessenberg Matrix H̄(i, j))

28

29

30

31

32

33

N
um

be
r

of
O

ut
er

Ite
ra

tio
ns

(m
1)

(b) Faulting with:

hi,j = hi,j × ||A||2 × 10−300

1 5 10 15 20 25
Iteration (Index) j→

1

5

10

15

20

25

←
Ite

ra
tio

n
(I

nd
ex

)
i

No Fa
ult

ing

Iterations w.o. Faulting:28

Number of Outer Iterations with and without Faulting
(Pseudo Hessenberg Matrix H̄(i, j))

28

29

30

31

32

N
um

be
r

of
O

ut
er

Ite
ra

tio
ns

(m
1)

(c) Faulting with:

hi,j = hi,j × ||A||2 × 1010

1 5 10 15 20 25
Iteration (Index) j→

1

5

10

15

20

25

←
Ite

ra
tio

n
(I

nd
ex

)
i

No Fa
ult

ing

Iterations w.o. Faulting:28

Number of Outer Iterations with and without Faulting
(Pseudo Hessenberg Matrix H̄(i, j))

28

29

30

N
um

be
r

of
O

ut
er

Ite
ra

tio
ns

(m
1)

(d) Faulting with:

hi,j = hi,j × ||A||2 × 10−0.5

Figure 100 Number of outer iterations for a single fault during orthogonalization (hi,j) and for

various disturbances while solving the chem_master1 matrix (, compare with figure 165).

In figure 100 the chem_master1 matrix is solved and as well faulting during orthogonalization

(hi,j) of the inner solver is shown. The F(T)-GMRES takes 28 outer iterations (m1) without a fault

and for the first trial whereas in the worst case 35 outer iterations (m1) are needed in the pres-

ence of a single fault such that the according overhead is about 21 % (35/29). For each trial and

computation the relative residuum (||r||2 = ||Ax − b||2)/||b||2) is below 10−5.5. In the case of the

chem_master1 matrix the F(T)-GMRES solves an un-symmetric problem.

Experimental Studies on FT-GMRES Page 149 of 226

9.8.9 Faulting during solving the ILL_Stokes problem for different kinds of faults (un-

symmetric problem) - Inner solver initialized with zero values.

1 5 10 15 20 25
Iteration (Index) j→

1

5

10

15

20

25

←
Ite

ra
tio

n
(I

nd
ex

)
i

No Fa
ult

ing

Iterations w.o. Faulting:23

Number of Outer Iterations with and without Faulting
(Pseudo Hessenberg Matrix H̄(i, j))

23

24

25

26

27

N
um

be
r

of
O

ut
er

Ite
ra

tio
ns

(m
1)

(a) Faulting with:

hi,j = hi,j × ||A||2 × 10150

1 5 10 15 20 25
Iteration (Index) j→

1

5

10

15

20

25

←
Ite

ra
tio

n
(I

nd
ex

)
i

No Fa
ult

ing

Iterations w.o. Faulting:23

Number of Outer Iterations with and without Faulting
(Pseudo Hessenberg Matrix H̄(i, j))

23

24

25

26

N
um

be
r

of
O

ut
er

Ite
ra

tio
ns

(m
1)

(b) Faulting with:

hi,j = hi,j × ||A||2 × 10−300

1 5 10 15 20 25
Iteration (Index) j→

1

5

10

15

20

25

←
Ite

ra
tio

n
(I

nd
ex

)
i

No Fa
ult

ing

Iterations w.o. Faulting:23

Number of Outer Iterations with and without Faulting
(Pseudo Hessenberg Matrix H̄(i, j))

23

24

25

N
um

be
r

of
O

ut
er

Ite
ra

tio
ns

(m
1)

(c) Faulting with:

hi,j = hi,j × ||A||2 × 1010

1 5 10 15 20 25
Iteration (Index) j→

1

5

10

15

20

25

←
Ite

ra
tio

n
(I

nd
ex

)
i

No Fa
ult

ing

Iterations w.o. Faulting:23

Number of Outer Iterations with and without Faulting
(Pseudo Hessenberg Matrix H̄(i, j))

23

24

25

26

27

N
um

be
r

of
O

ut
er

Ite
ra

tio
ns

(m
1)

(d) Faulting with:

hi,j = hi,j × ||A||2 × 10−0.5

Figure 101 Number of outer iterations for a single fault during orthogonalization (hi,j) and for

various disturbances while solving the ILL_Stokes matrix (, compare with figure 166).

In figure 101 the ILL_Stokes matrix is solved and as well faulting during orthogonalization (hi,j)

of the inner solver is shown. The FT-GMRES takes 23 outer iterations (m1) without a fault and

for the first trial whereas in the worst case 27 outer iterations (m1) are needed in the presence

of a single fault such that the according overhead is about 12.5 % (27/24). For each trial and

computation the relative residuum (||r||2 = ||Ax − b||2)/||b||2) is below 10−6. In the case of the

ILL_Stokes matrix the F(T)-GMRES solves an un-symmetric problem.

Experimental Studies on FT-GMRES Page 150 of 226

9.9 Faulting with single faults while solving further preconditioned prob-
lems with ILU-factorization (symmetric, un-symmetric)

9.9.1 Faulting during solving the Pres_Poisson problem for different kinds of faults (sym-

metric problem) - Inner solver initialized with zero values

1 5 10 15 20 25
Iteration (Index) j→

1

5

10

15

20

25

←
Ite

ra
tio

n
(I

nd
ex

)
i

No Fa
ult

ing

Iterations w.o. Faulting:8

Number of Outer Iterations with and without Faulting
(Pseudo Hessenberg Matrix H̄(i, j))

8

9

10

11

N
um

be
r

of
O

ut
er

Ite
ra

tio
ns

(m
1)

(a) Faulting with:

hi,j = hi,j × ||A||2 × 10150

1 5 10 15 20 25
Iteration (Index) j→

1

5

10

15

20

25

←
Ite

ra
tio

n
(I

nd
ex

)
i

No Fa
ult

ing

Iterations w.o. Faulting:8

Number of Outer Iterations with and without Faulting
(Pseudo Hessenberg Matrix H̄(i, j))

8

9

10

11

N
um

be
r

of
O

ut
er

Ite
ra

tio
ns

(m
1)

(b) Faulting with:

hi,j = hi,j × ||A||2 × 10−300

1 5 10 15 20 25
Iteration (Index) j→

1

5

10

15

20

25

←
Ite

ra
tio

n
(I

nd
ex

)
i

No Fa
ult

ing

Iterations w.o. Faulting:8

Number of Outer Iterations with and without Faulting
(Pseudo Hessenberg Matrix H̄(i, j))

8

9

10

11

N
um

be
r

of
O

ut
er

Ite
ra

tio
ns

(m
1)

(c) Faulting with:

hi,j = hi,j × ||A||2 × 1010

1 5 10 15 20 25
Iteration (Index) j→

1

5

10

15

20

25

←
Ite

ra
tio

n
(I

nd
ex

)
i

No Fa
ult

ing

Iterations w.o. Faulting:8

Number of Outer Iterations with and without Faulting
(Pseudo Hessenberg Matrix H̄(i, j))

8

9

10

11

N
um

be
r

of
O

ut
er

Ite
ra

tio
ns

(m
1)

(d) Faulting with:

hi,j = hi,j × ||A||2 × 10−0.5

Figure 102 Number of outer iterations for a single fault during orthogonalization (hi,j) and

for various disturbances while solving the Pres_Poisson matrix with ILU -preconditioning (and

ErrorILU
3 ≈ 3× 10−2). The inner solver builds an upper Hessenberg matrix as in formula 104.

As in figure 94 also the Pres_Poisson matrix is solved in figure 102 but with ILU -preconditioning.

The F(T)-GMRES takes 8 outer iterations (m1) without a fault whereas 25 iterations are set for the

inner solver (m2), there are 11 outer iterations needed in the presence of a single fault. For each

trial the relative residuum is below 10−6, the inner solver is initialized with zero values for wj(w0).

The worst overhead is 22 % (11/9) which is a decline against the un-preconditioned case (6.5 %).

The value of ErrorILU 3 is chosen such that most of the work is still done by the inner solver.

Experimental Studies on FT-GMRES Page 151 of 226

9.9.2 Faulting during solving the Kuu problem for different kinds of faults (symmetric

problem) - Inner solver initialized with zero values

1 5 10 15 20 25
Iteration (Index) j→

1

5

10

15

20

25

←
Ite

ra
tio

n
(I

nd
ex

)
i

No Fa
ult

ing

Iterations w.o. Faulting:17

Number of Outer Iterations with and without Faulting
(Pseudo Hessenberg Matrix H̄(i, j))

17

18

19

20

N
um

be
r

of
O

ut
er

Ite
ra

tio
ns

(m
1)

(a) Faulting with:

hi,j = hi,j × ||A||2 × 10150

1 5 10 15 20 25
Iteration (Index) j→

1

5

10

15

20

25

←
Ite

ra
tio

n
(I

nd
ex

)
i

No Fa
ult

ing

Iterations w.o. Faulting:17

Number of Outer Iterations with and without Faulting
(Pseudo Hessenberg Matrix H̄(i, j))

17

18

19

20

N
um

be
r

of
O

ut
er

Ite
ra

tio
ns

(m
1)

(b) Faulting with:

hi,j = hi,j × ||A||2 × 10−300

1 5 10 15 20 25
Iteration (Index) j→

1

5

10

15

20

25

←
Ite

ra
tio

n
(I

nd
ex

)
i

No Fa
ult

ing

Iterations w.o. Faulting:17

Number of Outer Iterations with and without Faulting
(Pseudo Hessenberg Matrix H̄(i, j))

17

18

19

20

N
um

be
r

of
O

ut
er

Ite
ra

tio
ns

(m
1)

(c) Faulting with:

hi,j = hi,j × ||A||2 × 1010

1 5 10 15 20 25
Iteration (Index) j→

1

5

10

15

20

25

←
Ite

ra
tio

n
(I

nd
ex

)
i

No Fa
ult

ing

Iterations w.o. Faulting:17

Number of Outer Iterations with and without Faulting
(Pseudo Hessenberg Matrix H̄(i, j))

17

18

19

20

21

22

N
um

be
r

of
O

ut
er

Ite
ra

tio
ns

(m
1)

(d) Faulting with:

hi,j = hi,j × ||A||2 × 10−0.5

Figure 103 Number of outer iterations for a single fault during orthogonalization (hi,j) and for

various disturbances while solving the Kuu matrix with ILU -preconditioning (and ErrorILU
3 ≈

3× 10−1). The inner solver of F(T)-GMRES builds an upper Hessenberg matrix as in formula 104.

As in figure 95 also the Kuu matrix is solved in figure 103 but with ILU -preconditioning. The

F(T)-GMRES takes 17 outer iterations (m1) without a fault and for the first trial whereas 25 iter-

ations are set for the inner solver (m2), there are 22 outer iterations needed in the presence of a

single fault. For each trial the relative residuum is below 10−9, the inner solver is initialized with

zero values for vector wj(w0). The worst overhead is 22 % (22/18) which is a decline against the

un-preconditioned case (15 %). The value of ErrorILU 3 is chosen such that most of the work is still

done by the inner solver (intuitively) because low values of ErrorILU indicate more work for the

ILU -decomposition.

Experimental Studies on FT-GMRES Page 152 of 226

9.9.3 Faulting during solving the Na5 problem for different kinds of faults (symmetric

problem) - Inner solver initialized with zero values

1 5 10 15 20 25
Iteration (Index) j→

1

5

10

15

20

25

←
Ite

ra
tio

n
(I

nd
ex

)
i

No Fa
ult

ing

Iterations w.o. Faulting:8

Number of Outer Iterations with and without Faulting
(Pseudo Hessenberg Matrix H̄(i, j))

8

9

10

11

12

N
um

be
r

of
O

ut
er

Ite
ra

tio
ns

(m
1)

(a) Faulting with:

hi,j = hi,j × ||A||2 × 10150

1 5 10 15 20 25
Iteration (Index) j→

1

5

10

15

20

25

←
Ite

ra
tio

n
(I

nd
ex

)
i

No Fa
ult

ing

Iterations w.o. Faulting:8

Number of Outer Iterations with and without Faulting
(Pseudo Hessenberg Matrix H̄(i, j))

8

9

10

11

12

N
um

be
r

of
O

ut
er

Ite
ra

tio
ns

(m
1)

(b) Faulting with:

hi,j = hi,j × ||A||2 × 10−300

1 5 10 15 20 25
Iteration (Index) j→

1

5

10

15

20

25

←
Ite

ra
tio

n
(I

nd
ex

)
i

No Fa
ult

ing

Iterations w.o. Faulting:8

Number of Outer Iterations with and without Faulting
(Pseudo Hessenberg Matrix H̄(i, j))

8

9

10

11

12

N
um

be
r

of
O

ut
er

Ite
ra

tio
ns

(m
1)

(c) Faulting with:

hi,j = hi,j × ||A||2 × 1010

1 5 10 15 20 25
Iteration (Index) j→

1

5

10

15

20

25

←
Ite

ra
tio

n
(I

nd
ex

)
i

No Fa
ult

ing

Iterations w.o. Faulting:8

Number of Outer Iterations with and without Faulting
(Pseudo Hessenberg Matrix H̄(i, j))

8

9

10

11

12

N
um

be
r

of
O

ut
er

Ite
ra

tio
ns

(m
1)

(d) Faulting with:

hi,j = hi,j × ||A||2 × 10−0.5

Figure 104 Number of outer iterations for a single fault during orthogonalization (hi,j) and for

various disturbances while solving the Na5 matrix with ILU -preconditioning (and ErrorILU
3 ≈

5× 10−2). The inner solver of F(T)-GMRES builds an upper Hessenberg matrix as in formula 104.

As in figure 96 also the Na5 matrix is solved in figure 104 but with ILU -preconditioning. The

F(T)-GMRES takes 8 outer iterations (m1) without a fault and for the first trial whereas 25 iterations

are set for the inner solver (m2), there are 12 outer iterations needed in the presence of a single

fault. For each trial the relative residuum is below 10−9, the inner solver is initialized with zero

values for vector wj(w0). The worst overhead is 33 % (12/9) which is a decline against the un-

preconditioned case (19 %). The value of ErrorILU 3 is chosen such that most of the work is still

done by the inner solver (intuitively) because low values of ErrorILU indicate more work for the

ILU -decomposition.

Experimental Studies on FT-GMRES Page 153 of 226

9.9.4 Faulting during solving the circuit_2 problem for different kinds of faults (un-

symmetric problem) - Inner solver initialized with zero values

1 5 10 15 20 25
Iteration (Index) j→

1

5

10

15

20

25

←
Ite

ra
tio

n
(I

nd
ex

)
i

No Fa
ult

ing

Iterations w.o. Faulting:4

Number of Outer Iterations with and without Faulting
(Pseudo Hessenberg Matrix H̄(i, j))

4

5

6

N
um

be
r

of
O

ut
er

Ite
ra

tio
ns

(m
1)

(a) Faulting with:

hi,j = hi,j × ||A||2 × 10150

1 5 10 15 20 25
Iteration (Index) j→

1

5

10

15

20

25

←
Ite

ra
tio

n
(I

nd
ex

)
i

No Fa
ult

ing

Iterations w.o. Faulting:4

Number of Outer Iterations with and without Faulting
(Pseudo Hessenberg Matrix H̄(i, j))

4

5

N
um

be
r

of
O

ut
er

Ite
ra

tio
ns

(m
1)

(b) Faulting with:

hi,j = hi,j × ||A||2 × 10−300

1 5 10 15 20 25
Iteration (Index) j→

1

5

10

15

20

25

←
Ite

ra
tio

n
(I

nd
ex

)
i

No Fa
ult

ing

Iterations w.o. Faulting:4

Number of Outer Iterations with and without Faulting
(Pseudo Hessenberg Matrix H̄(i, j))

4

5

6

N
um

be
r

of
O

ut
er

Ite
ra

tio
ns

(m
1)

(c) Faulting with:

hi,j = hi,j × ||A||2 × 1010

1 5 10 15 20 25
Iteration (Index) j→

1

5

10

15

20

25

←
Ite

ra
tio

n
(I

nd
ex

)
i

No Fa
ult

ing

Iterations w.o. Faulting:4

Number of Outer Iterations with and without Faulting
(Pseudo Hessenberg Matrix H̄(i, j))

4

5

6

N
um

be
r

of
O

ut
er

Ite
ra

tio
ns

(m
1)

(d) Faulting with:

hi,j = hi,j × ||A||2 × 10−0.5

Figure 105 Number of outer iterations for a single fault during orthogonalization (hi,j) and for

various disturbances while solving the circuit_2 matrix with ILU -preconditioning (and ErrorILU 3 ≈
998×10−3). The inner solver of F(T)-GMRES builds an upper Hessenberg matrix as in formula 104.

As in figure 98 also the circuit_2 matrix is solved in figure 105 but with ILU -preconditioning.

The F(T)-GMRES takes 4 outer iterations (m1) without a fault and for the first trial whereas 25

iterations are set for the inner solver (m2), there are 6 outer iterations (m1) needed in the presence

of a single fault. For each trial the relative residuum is below 10−9, the inner solver is initialized

with zero values for vector wj(w0). The worst overhead is 20 % (6/5) which is a decline against the

un-preconditioned case (14 %). The value of ErrorILU 3 is chosen such that most of the work is still

done by the inner solver (intuitively) because low values of ErrorILU indicate more work for the

ILU -decomposition.

Experimental Studies on FT-GMRES Page 154 of 226

9.9.5 Faulting during solving the chem_master1 problem for different kinds of faults

(un-symmetric problem) - Inner solver initialized with zero values

1 5 10 15 20 25
Iteration (Index) j→

1

5

10

15

20

25

←
Ite

ra
tio

n
(I

nd
ex

)
i

No Fa
ult

ing

Iterations w.o. Faulting:14

Number of Outer Iterations with and without Faulting
(Pseudo Hessenberg Matrix H̄(i, j))

14

15

16

17

N
um

be
r

of
O

ut
er

Ite
ra

tio
ns

(m
1)

(a) Faulting with:

hi,j = hi,j × ||A||2 × 10150

1 5 10 15 20 25
Iteration (Index) j→

1

5

10

15

20

25

←
Ite

ra
tio

n
(I

nd
ex

)
i

No Fa
ult

ing

Iterations w.o. Faulting:14

Number of Outer Iterations with and without Faulting
(Pseudo Hessenberg Matrix H̄(i, j))

14

15

16

N
um

be
r

of
O

ut
er

Ite
ra

tio
ns

(m
1)

(b) Faulting with:

hi,j = hi,j × ||A||2 × 10−300

1 5 10 15 20 25
Iteration (Index) j→

1

5

10

15

20

25

←
Ite

ra
tio

n
(I

nd
ex

)
i

No Fa
ult

ing

Iterations w.o. Faulting:14

Number of Outer Iterations with and without Faulting
(Pseudo Hessenberg Matrix H̄(i, j))

14

15

16

N
um

be
r

of
O

ut
er

Ite
ra

tio
ns

(m
1)

(c) Faulting with:

hi,j = hi,j × ||A||2 × 1010

1 5 10 15 20 25
Iteration (Index) j→

1

5

10

15

20

25

←
Ite

ra
tio

n
(I

nd
ex

)
i

No Fa
ult

ing

Iterations w.o. Faulting:14

Number of Outer Iterations with and without Faulting
(Pseudo Hessenberg Matrix H̄(i, j))

14

15

16

N
um

be
r

of
O

ut
er

Ite
ra

tio
ns

(m
1)

(d) Faulting with:

hi,j = hi,j × ||A||2 × 10−0.5

Figure 106 Number of outer iterations for a single fault during orthogonalization (hi,j) and

for various disturbances while solving the chem_master1 matrix with ILU -preconditioning (and

ErrorILU
3 ≈ 12× 10−2). The inner solver builds an upper Hessenberg matrix as in formula 104.

As in figure 100 also the chem_master1 matrix is solved in figure 106 but with ILU -preconditioning.

The F(T)-GMRES takes 14 outer iterations (m1) without a fault and for the first trial whereas 25

iterations are set for the inner solver (m2), there are 17 outer iterations needed in the presence

of a single fault. For each trial the relative residuum is below 10−5.5, the inner solver is initialized

with zero values for vector wj(w0). The worst overhead is 13 % (17/15) which is an improvement

against the un-preconditioned case (21 %). The value of ErrorILU 3 is chosen such that most of the

work is still done by the inner solver (intuitively) because low values of ErrorILU indicate more

work for the ILU -decomposition.

Experimental Studies on FT-GMRES Page 155 of 226

9.10 Faulting with single faults while solving further problems with ap-
plying flexible preconditioning by the inner solver of the FT-GMRES

9.10.1 Number of flops for solving the Pres_Poisson problem with flexible precondition-

ing by the inner solver and faulting - Inner solver initialized with zero values

1 5 10 15 20 25
Iteration (Index) j→

1

5

10

15

20

25

←
Ite

ra
tio

n
(I

nd
ex

)
i

No Fa
ult

ing

Flops w.o. Faulting:
1.429×109

Number of Flops with and without Faulting
(Pseudo Hessenberg Matrix H̃(i, j))

1.43

1.62

1.81

2.00

2.19

N
um

be
r

of
to

ta
lF

lo
ps

(F
T-

G
M

R
E

S
)×109

(a) Faulting with:

hi,j = hi,j × ||A||2 × 10150, δg = 1.00

1 5 10 15 20 25
Iteration (Index) j→

1

5

10

15

20

25

←
Ite

ra
tio

n
(I

nd
ex

)
i

No Fa
ult

ing

Flops w.o. Faulting:
1.336×109

Number of Flops with and without Faulting
(Pseudo Hessenberg Matrix H̃(i, j))

1.34

1.52

1.70

1.87

2.05

N
um

be
r

of
to

ta
lF

lo
ps

(F
T-

G
M

R
E

S
)×109

(b) Faulting with:

hi,j = hi,j × ||A||2 × 10150, δg = 0.95

1 5 10 15 20 25
Iteration (Index) j→

1

5

10

15

20

25

←
Ite

ra
tio

n
(I

nd
ex

)
i

No Fa
ult

ing

Flops w.o. Faulting:
1.329×109

Number of Flops with and without Faulting
(Pseudo Hessenberg Matrix H̃(i, j))

1.33

1.52

1.70

1.89

2.07

N
um

be
r

of
to

ta
lF

lo
ps

(F
T-

G
M

R
E

S
)×109

(c) Faulting with:

hi,j = hi,j × ||A||2 × 10150, δg = 0.9

1 5 10 15 20 25
Iteration (Index) j→

1

5

10

15

20

25

←
Ite

ra
tio

n
(I

nd
ex

)
i

No Fa
ult

ing

Flops w.o. Faulting:
8.604×108

Number of Flops with and without Faulting
(Pseudo Hessenberg Matrix H̃(i, j))

0.86

0.91

0.96

1.01

1.06

N
um

be
r

of
to

ta
lF

lo
ps

(F
T-

G
M

R
E

S
)×109

(d) Faulting with:

hi,j = hi,j × ||A||2 × 10150, δg = 0.5

Figure 107 Number of total flops for a single fault on a specific position during orthogonalization

(hi,j) of the inner solver with flexible preconditioning while solving the Pres_Poisson (sym.) matrix.

As in section 9.6.4 flexible preconditioning is also applied in figure 107 during solving the

Pres_Poisson matrix. The inner solver of the FT-GMRES does at least 1 but at most 35 iterations

(m2). In figure 107 always the same error is induced for a single fault but the value of δg (δg =

1− ||σj ||22
||σ0||22

) is changed, if this value is achieved during preconditioning of the inner solver then this

solver is stopped and the outer solver is allowed to continue. The worst overhead (≈ 10 - 40 %)

does not remain the same for each δg. The relative residuum (||r||2 = ||Ax− b||2/||b||2) is below 10−6

for all computations. The number of flops has been decreased from 1.429× 109 to 8.604× 108.

Experimental Studies on FT-GMRES Page 156 of 226

9.10.2 Number of flops for solving the Kuu problem with flexible preconditioning by the

inner solver and faulting - Inner solver initialized with zero values

1 5 10 15 20 25
Iteration (Index) j→

1

5

10

15

20

25

←
Ite

ra
tio

n
(I

nd
ex

)
i

No Fa
ult

ing

Flops w.o. Faulting:
9.072×108

Number of Flops with and without Faulting
(Pseudo Hessenberg Matrix H̃(i, j))

0.91

0.95

0.99

1.02

1.06

N
um

be
r

of
to

ta
lF

lo
ps

(F
T-

G
M

R
E

S
)×109

(a) Faulting with:

hi,j = hi,j × ||A||2 × 10150, δg = 1.00

1 5 10 15 20 25
Iteration (Index) j→

1

5

10

15

20

25

←
Ite

ra
tio

n
(I

nd
ex

)
i

No Fa
ult

ing

Flops w.o. Faulting:
8.024×108

Number of Flops with and without Faulting
(Pseudo Hessenberg Matrix H̃(i, j))

8.02

8.42

8.82

9.21

9.61

N
um

be
r

of
to

ta
lF

lo
ps

(F
T-

G
M

R
E

S
)×108

(b) Faulting with:

hi,j = hi,j × ||A||2 × 10150, δg = 0.95

1 5 10 15 20 25
Iteration (Index) j→

1

5

10

15

20

25

←
Ite

ra
tio

n
(I

nd
ex

)
i

No Fa
ult

ing

Flops w.o. Faulting:
6.974×108

Number of Flops with and without Faulting
(Pseudo Hessenberg Matrix H̃(i, j))

6.97

7.45

7.94

8.42

8.90

N
um

be
r

of
to

ta
lF

lo
ps

(F
T-

G
M

R
E

S
)×108

(c) Faulting with:

hi,j = hi,j × ||A||2 × 10150, δg = 0.9

1 5 10 15 20 25
Iteration (Index) j→

1

5

10

15

20

25

←
Ite

ra
tio

n
(I

nd
ex

)
i

No Fa
ult

ing

Flops w.o. Faulting:
3.662×108

Number of Flops with and without Faulting
(Pseudo Hessenberg Matrix H̃(i, j))

3.66

4.26

4.87

5.47

6.07

N
um

be
r

of
to

ta
lF

lo
ps

(F
T-

G
M

R
E

S
)×108

(d) Faulting with:

hi,j = hi,j × ||A||2 × 10150, δg = 0.5

Figure 108 Number of total flops for a single fault on a specific position during orthogonalization

(hi,j) of the inner solver with flexible preconditioning while solving the Kuu (symmetric) matrix.

As in section 9.6.4 flexible preconditioning is also applied in figure 108 during solving the Kuu

matrix. The inner solver of the FT-GMRES does at least 1 but at most 35 iterations (m2). In figure

108 always the same error is induced for a single fault but the value of δg (δg = 1 − ||σj ||22
||σ0||22

) is

changed, if this value is achieved during preconditioning of the inner solver then this solver is

stopped and the outer solver is allowed to continue. The worst overhead (≈ 10 - 45 %) does not

remain the same for each δg, lower values of δg lead to more overhead. The relative residuum

(||r||2 = ||Ax − b||2/||b||2) is below 10−9 for all computations and trials. The number of flops has

been decreased from 9.072× 108 to 3.662× 108 for a failure free computation.

Experimental Studies on FT-GMRES Page 157 of 226

9.10.3 Number of flops for solving the Na5 problem with flexible preconditioning by the

inner solver and faulting - Inner solver initialized with zero values

1 5 10 15 20 25
Iteration (Index) j→

1

5

10

15

20

25

←
Ite

ra
tio

n
(I

nd
ex

)
i

No Fa
ult

ing

Flops w.o. Faulting:
6.189×108

Number of Flops with and without Faulting
(Pseudo Hessenberg Matrix H̃(i, j))

6.19

6.60

7.02

7.43

7.84

N
um

be
r

of
to

ta
lF

lo
ps

(F
T-

G
M

R
E

S
)×108

(a) Faulting with:

hi,j = hi,j × ||A||2 × 10150, δg = 1.00

1 5 10 15 20 25
Iteration (Index) j→

1

5

10

15

20

25

←
Ite

ra
tio

n
(I

nd
ex

)
i

No Fa
ult

ing

Flops w.o. Faulting:
5.233×108

Number of Flops with and without Faulting
(Pseudo Hessenberg Matrix H̃(i, j))

5.23

5.85

6.48

7.10

7.72

N
um

be
r

of
to

ta
lF

lo
ps

(F
T-

G
M

R
E

S
)×108

(b) Faulting with:

hi,j = hi,j × ||A||2 × 10150, δg = 0.95

1 5 10 15 20 25
Iteration (Index) j→

1

5

10

15

20

25

←
Ite

ra
tio

n
(I

nd
ex

)
i

No Fa
ult

ing

Flops w.o. Faulting:
5.546×108

Number of Flops with and without Faulting
(Pseudo Hessenberg Matrix H̃(i, j))

5.55

6.07

6.59

7.10

7.62

N
um

be
r

of
to

ta
lF

lo
ps

(F
T-

G
M

R
E

S
)×108

(c) Faulting with:

hi,j = hi,j × ||A||2 × 10150, δg = 0.9

1 5 10 15 20 25
Iteration (Index) j→

1

5

10

15

20

25

←
Ite

ra
tio

n
(I

nd
ex

)
i

No Fa
ult

ing

Flops w.o. Faulting:
4.131×108

Number of Flops with and without Faulting
(Pseudo Hessenberg Matrix H̃(i, j))

4.13

4.70

5.27

5.84

6.41

N
um

be
r

of
to

ta
lF

lo
ps

(F
T-

G
M

R
E

S
)×108

(d) Faulting with:

hi,j = hi,j × ||A||2 × 10150, δg = 0.5

Figure 109 Number of total flops for a single fault on a specific position during orthogonalization

(hi,j) of the inner solver with flexible preconditioning while solving the Na5 (symmetric) matrix.

As in section 9.6.4 flexible preconditioning is also applied in figure 109 during solving the Na5

matrix. The inner solver of the FT-GMRES does at least 1 but at most 35 iterations (m2). In figure

109 always the same error is induced for a single fault but the value of δg (δg = 1 − ||σj ||22
||σ0||22

) is

changed, if this value is achieved during preconditioning of the inner solver then this solver is

stopped and the outer solver is allowed to continue. The worst overhead (≈ 10 - 30 %) does not

remain the same for each δg, lower values of δg lead to more overhead. The relative residuum

(||r||2 = ||Ax − b||2/||b||2) is below 10−9 for all computations and trials. The number of flops has

been decreased from 6.189× 108 to 4.131× 108 for a failure free computation.

Experimental Studies on FT-GMRES Page 158 of 226

9.10.4 Number of flops for solving the circuit_2 problem with flexible preconditioning by

the inner solver and faulting - Inner solver initialized with zero values

1 5 10 15 20 25
Iteration (Index) j→

1

5

10

15

20

25

←
Ite

ra
tio

n
(I

nd
ex

)
i

No Fa
ult

ing

Flops w.o. Faulting:
1.453×108

Number of Flops with and without Faulting
(Pseudo Hessenberg Matrix H̃(i, j))

1.45

1.60

1.75

1.89

2.04

N
um

be
r

of
to

ta
lF

lo
ps

(F
T-

G
M

R
E

S
)×108

(a) Faulting with:

hi,j = hi,j × ||A||2 × 10150, δg = 1.00

1 5 10 15 20 25
Iteration (Index) j→

1

5

10

15

20

25

←
Ite

ra
tio

n
(I

nd
ex

)
i

No Fa
ult

ing

Flops w.o. Faulting:
1.162×108

Number of Flops with and without Faulting
(Pseudo Hessenberg Matrix H̃(i, j))

1.16

1.27

1.38

1.49

1.60

N
um

be
r

of
to

ta
lF

lo
ps

(F
T-

G
M

R
E

S
)×108

(b) Faulting with:

hi,j = hi,j × ||A||2 × 10150, δg = 0.95

1 5 10 15 20 25
Iteration (Index) j→

1

5

10

15

20

25

←
Ite

ra
tio

n
(I

nd
ex

)
i

No Fa
ult

ing

Flops w.o. Faulting:
1.218×108

Number of Flops with and without Faulting
(Pseudo Hessenberg Matrix H̃(i, j))

1.22

1.32

1.41

1.51

1.60

N
um

be
r

of
to

ta
lF

lo
ps

(F
T-

G
M

R
E

S
)×108

(c) Faulting with:

hi,j = hi,j × ||A||2 × 10150, δg = 0.9

1 5 10 15 20 25
Iteration (Index) j→

1

5

10

15

20

25

←
Ite

ra
tio

n
(I

nd
ex

)
i

No Fa
ult

ing

Flops w.o. Faulting:
1.314×108

Number of Flops with and without Faulting
(Pseudo Hessenberg Matrix H̃(i, j))

1.31

1.47

1.63

1.78

1.94

N
um

be
r

of
to

ta
lF

lo
ps

(F
T-

G
M

R
E

S
)×108

(d) Faulting with:

hi,j = hi,j × ||A||2 × 10150, δg = 0.5

Figure 110 Number of total flops for a single fault on a specific position during orthogonalization

(hi,j) of the inner solver with flexible preconditioning while solving the circuit_2 (un-symmetric)

matrix.

As in section 9.6.4 flexible preconditioning is also applied in figure 110 during solving the

circuit_2 matrix. The inner solver of the FT-GMRES does at least 1 but at most 35 iterations (m2).

In figure 110 always the same error is induced for a single fault but the value of δg (δg = 1− ||σj ||22
||σ0||22

)

is changed, if this value is achieved during preconditioning of the inner solver then this solver is

stopped and the outer solver is allowed to continue. The worst overhead (≈ 10 - 35 %) does not

remain the same for each δg. The relative residuum (||r||2 = ||Ax − b||2/||b||2) is below 10−9 for all

trials. The number of flops has been decreased from 1.453× 108 to 1.162× 108 for a failure free run.

Experimental Studies on FT-GMRES Page 159 of 226

9.10.5 Number of flops for solving the mult_dcop_03 problem with flexible precondition-

ing by the inner solver and faulting - Inner solver initialized with zero values

1 5 10 15 20 25
Iteration (Index) j→

1

5

10

15

20

25

←
Ite

ra
tio

n
(I

nd
ex

)
i

No Fa
ult

ing

Flops w.o. Faulting:
1.922×109

Number of Flops with and without Faulting
(Pseudo Hessenberg Matrix H̃(i, j))

1.92

2.02

2.12

2.21

2.31

N
um

be
r

of
to

ta
lF

lo
ps

(F
T-

G
M

R
E

S
)×109

(a) Faulting with:

hi,j = hi,j × ||A||2 × 10150, δg = 1.00

1 5 10 15 20 25
Iteration (Index) j→

1

5

10

15

20

25

←
Ite

ra
tio

n
(I

nd
ex

)
i

No Fa
ult

ing

Flops w.o. Faulting:
1.793×109

Number of Flops with and without Faulting
(Pseudo Hessenberg Matrix H̃(i, j))

1.79

1.97

2.15

2.32

2.50

N
um

be
r

of
to

ta
lF

lo
ps

(F
T-

G
M

R
E

S
)×109

(b) Faulting with:

hi,j = hi,j × ||A||2 × 10150, δg = 0.95

1 5 10 15 20 25
Iteration (Index) j→

1

5

10

15

20

25

←
Ite

ra
tio

n
(I

nd
ex

)
i

No Fa
ult

ing

Flops w.o. Faulting:
1.821×109

Number of Flops with and without Faulting
(Pseudo Hessenberg Matrix H̃(i, j))

1.82

1.92

2.03

2.13

2.23

N
um

be
r

of
to

ta
lF

lo
ps

(F
T-

G
M

R
E

S
)×109

(c) Faulting with:

hi,j = hi,j × ||A||2 × 10150, δg = 0.9

1 5 10 15 20 25
Iteration (Index) j→

1

5

10

15

20

25

←
Ite

ra
tio

n
(I

nd
ex

)
i

No Fa
ult

ing

Flops w.o. Faulting:
1.605×109

Number of Flops with and without Faulting
(Pseudo Hessenberg Matrix H̃(i, j))

1.60

1.71

1.81

1.92

2.02

N
um

be
r

of
to

ta
lF

lo
ps

(F
T-

G
M

R
E

S
)×109

(d) Faulting with:

hi,j = hi,j × ||A||2 × 10150, δg = 0.5

Figure 111 Number of total flops for a single fault on a specific position during orthogonaliza-

tion (hi,j) of the inner solver with flexible preconditioning while solving the mult_dcop_03 (un-

symmetric) matrix.

As in section 9.6.4 flexible preconditioning is also applied in figure 111 during solving the

mult_dcop_03 matrix. The inner solver of the FT-GMRES does at least 1 but at most 35 iterations

(m2). In figure 111 always the same error is induced for a single fault but the value of δg (δg =

1− ||σj ||22
||σ0||22

) is changed, if this value is achieved during preconditioning of the inner solver then this

solver is stopped and the outer solver is allowed to continue. The worst overhead (≈ 15 - 30 %)

does not remain the same for each δg. The relative residuum (||r||2 = ||Ax− b||2/||b||2) is below 10−9

for all computations. The number of flops has been decreased from 1.922× 109 to 1.605× 109.

Experimental Studies on FT-GMRES Page 160 of 226

9.10.6 Number of flops for solving the chem_master1 problem with flexible precondition-

ing by the inner solver and faulting - Inner solver initialized with zero values

1 5 10 15 20 25
Iteration (Index) j→

1

5

10

15

20

25

←
Ite

ra
tio

n
(I

nd
ex

)
i

No Fa
ult

ing

Flops w.o. Faulting:
5.697×109

Number of Flops with and without Faulting
(Pseudo Hessenberg Matrix H̃(i, j))

5.70

5.92

6.14

6.35

6.57

N
um

be
r

of
to

ta
lF

lo
ps

(F
T-

G
M

R
E

S
)×109

(a) Faulting with:

hi,j = hi,j × ||A||2 × 10150, δg = 1.00

1 5 10 15 20 25
Iteration (Index) j→

1

5

10

15

20

25

←
Ite

ra
tio

n
(I

nd
ex

)
i

No Fa
ult

ing

Flops w.o. Faulting:
5.602×109

Number of Flops with and without Faulting
(Pseudo Hessenberg Matrix H̃(i, j))

5.60

5.79

5.98

6.16

6.35

N
um

be
r

of
to

ta
lF

lo
ps

(F
T-

G
M

R
E

S
)×109

(b) Faulting with:

hi,j = hi,j × ||A||2 × 10150, δg = 0.95

1 5 10 15 20 25
Iteration (Index) j→

1

5

10

15

20

25

←
Ite

ra
tio

n
(I

nd
ex

)
i

No Fa
ult

ing

Flops w.o. Faulting:
5.541×109

Number of Flops with and without Faulting
(Pseudo Hessenberg Matrix H̃(i, j))

5.54

5.73

5.92

6.10

6.29

N
um

be
r

of
to

ta
lF

lo
ps

(F
T-

G
M

R
E

S
)×109

(c) Faulting with:

hi,j = hi,j × ||A||2 × 10150, δg = 0.9

1 5 10 15 20 25
Iteration (Index) j→

1

5

10

15

20

25

←
Ite

ra
tio

n
(I

nd
ex

)
i

No Fa
ult

ing

Flops w.o. Faulting:
4.799×109

Number of Flops with and without Faulting
(Pseudo Hessenberg Matrix H̃(i, j))

4.80

5.04

5.27

5.51

5.74

N
um

be
r

of
to

ta
lF

lo
ps

(F
T-

G
M

R
E

S
)×109

(d) Faulting with:

hi,j = hi,j × ||A||2 × 10150, δg = 0.5

Figure 112 Number of total flops for a single fault on a specific position during orthogonaliza-

tion (hi,j) of the inner solver with flexible preconditioning while solving the chem_master1 (un-

symmetric) matrix.

As in section 9.6.4 flexible preconditioning is also applied in figure 112 during solving the

chem_master1 matrix. The inner solver of the FT-GMRES does at least 1 but at most 35 iterations

(m2). In figure 112 always the same error is induced for a single fault but the value of δg (δg =

1− ||σj ||22
||σ0||22

) is changed, if this value is achieved during preconditioning of the inner solver then this

solver is stopped and the outer solver is allowed to continue. The worst overhead (≈ 10 - 16 %)

does remain the same for each δg. The relative residuum (||r||2 = ||Ax − b||2/||b||2) is below 10−5.5

for all trials. The number of flops has been decreased from 5.697× 109 to 4.799× 109.

Experimental Studies on FT-GMRES Page 161 of 226

9.10.7 Number of flops for solving the Ill_Stokes problem with flexible preconditioning

by the inner solver and faulting - Inner solver initialized with zero values

1 5 10 15 20 25
Iteration (Index) j→

1

5

10

15

20

25

←
Ite

ra
tio

n
(I

nd
ex

)
i

No Fa
ult

ing

Flops w.o. Faulting:
1.540×109

Number of Flops with and without Faulting
(Pseudo Hessenberg Matrix H̃(i, j))

1.54

1.62

1.71

1.79

1.87

N
um

be
r

of
to

ta
lF

lo
ps

(F
T-

G
M

R
E

S
)×109

(a) Faulting with:

hi,j = hi,j × ||A||2 × 10150, δg = 1.00

1 5 10 15 20 25
Iteration (Index) j→

1

5

10

15

20

25

←
Ite

ra
tio

n
(I

nd
ex

)
i

No Fa
ult

ing

Flops w.o. Faulting:
1.280×109

Number of Flops with and without Faulting
(Pseudo Hessenberg Matrix H̃(i, j))

1.28

1.37

1.47

1.56

1.65

N
um

be
r

of
to

ta
lF

lo
ps

(F
T-

G
M

R
E

S
)×109

(b) Faulting with:

hi,j = hi,j × ||A||2 × 10150, δg = 0.95

1 5 10 15 20 25
Iteration (Index) j→

1

5

10

15

20

25

←
Ite

ra
tio

n
(I

nd
ex

)
i

No Fa
ult

ing

Flops w.o. Faulting:
1.212×109

Number of Flops with and without Faulting
(Pseudo Hessenberg Matrix H̃(i, j))

1.21

1.30

1.39

1.47

1.56

N
um

be
r

of
to

ta
lF

lo
ps

(F
T-

G
M

R
E

S
)×109

(c) Faulting with:

hi,j = hi,j × ||A||2 × 10150, δg = 0.9

1 5 10 15 20 25
Iteration (Index) j→

1

5

10

15

20

25

←
Ite

ra
tio

n
(I

nd
ex

)
i

No Fa
ult

ing

Flops w.o. Faulting:
1.052×109

Number of Flops with and without Faulting
(Pseudo Hessenberg Matrix H̃(i, j))

1.05

1.20

1.34

1.49

1.63

N
um

be
r

of
to

ta
lF

lo
ps

(F
T-

G
M

R
E

S
)×109

(d) Faulting with:

hi,j = hi,j × ||A||2 × 10150, δg = 0.5

Figure 113 Number of total flops for a single fault on a specific position during orthogonalization

(hi,j) of the inner solver with flexible preconditioning while solving the Ill_Stokes (un-symmetric)

matrix. Lower values of δg lead to more overhead in the presence of a single fault.

As in section 9.6.4 flexible preconditioning is also applied in figure 113 during solving the

Ill_Stokes matrix. The inner solver of the FT-GMRES does at least 1 but at most 35 iterations (m2).

In figure 113 always the same error is induced for a single fault but the value of δg (δg = 1− ||σj ||22
||σ0||22

)

is changed, if this value is achieved during preconditioning of the inner solver then this solver is

stopped and the outer solver is allowed to continue. The worst overhead (≈ 15 - 35 %) does not

remain the same for each δg. The relative residuum (||r||2 = ||Ax − b||2/||b||2) is below 10−6 for all

trials. The number of flops has been decreased from 1.540× 109 to 1.052× 109 for a failure free run.

Experimental Studies on FT-GMRES Page 162 of 226

9.11 Faulting with multiple faults while solving further problems
9.11.1 Faulting during solving the circuit_2 problem along index i - Inner solver initial-

ized with zero values (and with 25 iterations for the inner solver)

1 5 10 15 20 25
Iteration (Index) j→

1

5

10

15

20

25

←
Ite

ra
tio

n
(I

nd
ex

)
i

No Fa
ult

ing

Iterations w.o. Faulting:28

Number of Outer Iterations with and without Faulting
(Pseudo Hessenberg Matrix H̄i(i, j))

28

29

N
um

be
r

of
O

ut
er

Ite
ra

tio
ns

(m
1)

(a) Faulting with:

hi,j = hi,j × ||A||2 × 10−300

1 5 10 15 20 25
Iteration (Index) j→

1

5

10

15

20

25

←
Ite

ra
tio

n
(I

nd
ex

)
i

No Fa
ult

ing

Iterations w.o. Faulting:28

Number of Outer Iterations with and without Faulting
(Pseudo Hessenberg Matrix H̄i(i, j))

28

29

N
um

be
r

of
O

ut
er

Ite
ra

tio
ns

(m
1)

(b) Faulting with:

hi,j = hi,j × ||A||2 × 1020

1 5 10 15 20 25
Iteration (Index) j→

1

5

10

15

20

25

←
Ite

ra
tio

n
(I

nd
ex

)
i

No Fa
ult

ing

Iterations w.o. Faulting:28

Number of Outer Iterations with and without Faulting
(Pseudo Hessenberg Matrix H̄i(i, j))

28

29

N
um

be
r

of
O

ut
er

Ite
ra

tio
ns

(m
1)

(c) Faulting with:

hi,j = hi,j × ||A||2 × 10−0.5

1 5 10 15 20 25
Iteration (Index) j→

1

5

10

15

20

25

←
Ite

ra
tio

n
(I

nd
ex

)
i

No Fa
ult

ing

Iterations w.o. Faulting:28

Number of Outer Iterations with and without Faulting
(Pseudo Hessenberg Matrix H̄i(i, j))

28

29

N
um

be
r

of
O

ut
er

Ite
ra

tio
ns

(m
1)

(d) Faulting with:

hi,j = hi,j × ||A||2 × 2

Figure 114 Number of outer iterations for multiple faults during orthogonalization (hi,j) of the

inner solver along index i and for various disturbances while solving the circuit_2 problem.

In figure 114 faulting along index i with multiple faults is shown during solving the circuit_2

matrix. There is no overhead caused in figure 114, one additional iteration is needed for the FT-

GMRES which is mainly because of achieving the same relative residuum (||r||2 = ||Ax− b||2/ ||b||2)

as the F-GMRES after computation (10−9). The F-GMRES takes 28 outer iterations (m1) without a

fault for the first trial such that a relative residuum below 10−9 is achieved. Faulting along index i

with multiple faults and with the same error seems to be almost uncritical in figure 114.

Experimental Studies on FT-GMRES Page 163 of 226

9.11.2 Faulting during solving the circuit_2 problem along index j - Inner solver initial-

ized with zero values (and with 25 iterations for the inner solver)

1 5 10 15 20 25
Iteration (Index) j→

1

5

10

15

20

25

←
Ite

ra
tio

n
(I

nd
ex

)
i

No Fa
ult

ing

Iterations w.o. Faulting:28

Number of Outer Iterations with and without Faulting
(Pseudo Hessenberg Matrix H̄j(i, j))

28

29

30

31

N
um

be
r

of
O

ut
er

Ite
ra

tio
ns

(m
1)

(a) Faulting with:

hi,j = hi,j × ||A||2 × 10−300

1 5 10 15 20 25
Iteration (Index) j→

1

5

10

15

20

25

←
Ite

ra
tio

n
(I

nd
ex

)
i

No Fa
ult

ing

Iterations w.o. Faulting:28

Number of Outer Iterations with and without Faulting
(Pseudo Hessenberg Matrix H̄j(i, j))

28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

N
um

be
r

of
O

ut
er

Ite
ra

tio
ns

(m
1)

(b) Faulting with:

hi,j = hi,j × ||A||2 × 1020

1 5 10 15 20 25
Iteration (Index) j→

1

5

10

15

20

25

←
Ite

ra
tio

n
(I

nd
ex

)
i

No Fa
ult

ing

Iterations w.o. Faulting:28

Number of Outer Iterations with and without Faulting
(Pseudo Hessenberg Matrix H̄i(i, j))

28

29

30

N
um

be
r

of
O

ut
er

Ite
ra

tio
ns

(m
1)

(c) Faulting with:

hi,j = hi,j × ||A||2 × 10−0.5

1 5 10 15 20 25
Iteration (Index) j→

1

5

10

15

20

25

←
Ite

ra
tio

n
(I

nd
ex

)
i

No Fa
ult

ing

Iterations w.o. Faulting:28

Number of Outer Iterations with and without Faulting
(Pseudo Hessenberg Matrix H̄i(i, j))

28

29

30

N
um

be
r

of
O

ut
er

Ite
ra

tio
ns

(m
1)

(d) Faulting with:

hi,j = hi,j × ||A||2 × 2

Figure 115 Number of outer iterations for multiple faults during orthogonalization (hi,j) of the

inner solver along index j and for various disturbances while solving the circuit_2 problem.

In figure 115 faulting along index j with multiple faults is shown during solving the circuit_2

problem. There is some overhead caused in figure 115b of about 45 % (42/29), one additional

iteration is needed for the FT-GMRES which is mainly because of achieving the same relative

residuum (||r||2 = ||Ax− b||2/ ||b||2) as the F-GMRES after computation (10−9). The F-GMRES takes

28 outer iterations (m1) without a fault and for the first trial such that a relative residuum below

10−9 is achieved. Faulting along index j with multiple faults seems to be more critical in figure 115

especially in figure 115b. (Compare with figure 98.)

Experimental Studies on FT-GMRES Page 164 of 226

9.11.3 Faulting during solving the mult_dcop_03 problem along index i - Inner solver

initialized with zero values (and with 25 iterations for the inner solver)

1 5 10 15 20 25
Iteration (Index) j→

1

5

10

15

20

25

←
Ite

ra
tio

n
(I

nd
ex

)
i

No Fa
ult

ing

Iterations w.o. Faulting:45

Number of Outer Iterations with and without Faulting
(Pseudo Hessenberg Matrix H̄i(i, j))

45

46

47

N
um

be
r

of
O

ut
er

Ite
ra

tio
ns

(m
1)

(a) Faulting with:

hi,j = hi,j × ||A||2 × 10−300

1 5 10 15 20 25
Iteration (Index) j→

1

5

10

15

20

25

←
Ite

ra
tio

n
(I

nd
ex

)
i

No Fa
ult

ing

Iterations w.o. Faulting:45

Number of Outer Iterations with and without Faulting
(Pseudo Hessenberg Matrix H̄i(i, j))

45

46

47

N
um

be
r

of
O

ut
er

Ite
ra

tio
ns

(m
1)

(b) Faulting with:

hi,j = hi,j × ||A||2 × 1020

1 5 10 15 20 25
Iteration (Index) j→

1

5

10

15

20

25

←
Ite

ra
tio

n
(I

nd
ex

)
i

No Fa
ult

ing

Iterations w.o. Faulting:45

Number of Outer Iterations with and without Faulting
(Pseudo Hessenberg Matrix H̄i(i, j))

45

46

47

N
um

be
r

of
O

ut
er

Ite
ra

tio
ns

(m
1)

(c) Faulting with:

hi,j = hi,j × ||A||2 × 10−0.5

1 5 10 15 20 25
Iteration (Index) j→

1

5

10

15

20

25

←
Ite

ra
tio

n
(I

nd
ex

)
i

No Fa
ult

ing

Iterations w.o. Faulting:45

Number of Outer Iterations with and without Faulting
(Pseudo Hessenberg Matrix H̄i(i, j))

45

46

47

N
um

be
r

of
O

ut
er

Ite
ra

tio
ns

(m
1)

(d) Faulting with:

hi,j = hi,j × ||A||2 × 2

Figure 116 Number of outer iterations for multiple faults during orthogonalization (hi,j) of the

inner solver along index i and for various disturbances while solving the mult_dcop_03 problem.

In figure 116 faulting along index iwith multiple faults is shown during solving the mult_dcop_03

matrix. There is some overhead caused in figure 116b of about 2 % (47/46), one additional itera-

tion is needed for the FT-GMRES which is mainly because of achieving the same relative residuum

(||r||2 = ||Ax− b||2/ ||b||2) as the F-GMRES after computation (10−9). The F-GMRES takes 45 outer

iterations (m1) without a fault and for the first trial such that a relative residuum below 10−9 is

achieved. Faulting along index i with multiple faults and with the same error seems to be almost

uncritical in figure 116.

Experimental Studies on FT-GMRES Page 165 of 226

9.11.4 Faulting during solving the mult_dcop_03 problem along index j - Inner solver

initialized with zero values (and with 25 iterations for the inner solver)

1 5 10 15 20 25
Iteration (Index) j→

1

5

10

15

20

25

←
Ite

ra
tio

n
(I

nd
ex

)
i

No Fa
ult

ing

Iterations w.o. Faulting:45

Number of Outer Iterations with and without Faulting
(Pseudo Hessenberg Matrix H̄j(i, j))

45

46

47

48

49

50

N
um

be
r

of
O

ut
er

Ite
ra

tio
ns

(m
1)

(a) Faulting with:

hi,j = hi,j × ||A||2 × 10−300

1 5 10 15 20 25
Iteration (Index) j→

1

5

10

15

20

25

←
Ite

ra
tio

n
(I

nd
ex

)
i

No Fa
ult

ing

Iterations w.o. Faulting:45

Number of Outer Iterations with and without Faulting
(Pseudo Hessenberg Matrix H̄j(i, j))

45

46

47

48

49

50

51

52

53

54

55

56

N
um

be
r

of
O

ut
er

Ite
ra

tio
ns

(m
1)

(b) Faulting with:

hi,j = hi,j × ||A||2 × 1020

1 5 10 15 20 25
Iteration (Index) j→

1

5

10

15

20

25

←
Ite

ra
tio

n
(I

nd
ex

)
i

No Fa
ult

ing

Iterations w.o. Faulting:45

Number of Outer Iterations with and without Faulting
(Pseudo Hessenberg Matrix H̄j(i, j))

45

46

47

48

49

50

51

N
um

be
r

of
O

ut
er

Ite
ra

tio
ns

(m
1)

(c) Faulting with:

hi,j = hi,j × ||A||2 × 10−0.5

1 5 10 15 20 25
Iteration (Index) j→

1

5

10

15

20

25

←
Ite

ra
tio

n
(I

nd
ex

)
i

No Fa
ult

ing

Iterations w.o. Faulting:45

Number of Outer Iterations with and without Faulting
(Pseudo Hessenberg Matrix H̄j(i, j))

45

46

47

48

49

50

51

N
um

be
r

of
O

ut
er

Ite
ra

tio
ns

(m
1)

(d) Faulting with:

hi,j = hi,j × ||A||2 × 2

Figure 117 Number of outer iterations for multiple faults during orthogonalization (hi,j) of the

inner solver along index j and for various disturbances while solving the mult_dcop_03 problem.

In figure 117 faulting along index j with multiple faults is shown during solving the mult_dcop_03

matrix. There is some overhead caused in figure 117b of about 22 % (56/46), one additional itera-

tion is needed for the FT-GMRES which is mainly because of achieving the same relative residuum

(||r||2 = ||Ax− b||2/ ||b||2) as the F-GMRES after computation (10−9). The F-GMRES takes 45 outer

iterations (m1) without a fault and for the first trial such that a relative residuum below 10−9 is

achieved. Faulting along index j with multiple faults seems to be more critical in figure 117 espe-

cially in figure 117b. (Compare with figure 99.)

Experimental Studies on FT-GMRES Page 166 of 226

9.11.5 Faulting during solving the ILL_Stokes problem along index i - Inner solver ini-

tialized with zero values (and with 25 iterations for the inner solver)

1 5 10 15 20 25
Iteration (Index) j→

1

5

10

15

20

25

←
Ite

ra
tio

n
(I

nd
ex

)
i

No Fa
ult

ing

Iterations w.o. Faulting:23

Number of Outer Iterations with and without Faulting
(Pseudo Hessenberg Matrix H̄i(i, j))

23

24

N
um

be
r

of
O

ut
er

Ite
ra

tio
ns

(m
1)

(a) Faulting with:

hi,j = hi,j × ||A||2 × 10−300

1 5 10 15 20 25
Iteration (Index) j→

1

5

10

15

20

25

←
Ite

ra
tio

n
(I

nd
ex

)
i

No Fa
ult

ing

Iterations w.o. Faulting:23

Number of Outer Iterations with and without Faulting
(Pseudo Hessenberg Matrix H̄i(i, j))

23

24

N
um

be
r

of
O

ut
er

Ite
ra

tio
ns

(m
1)

(b) Faulting with:

hi,j = hi,j × ||A||2 × 1020

1 5 10 15 20 25
Iteration (Index) j→

1

5

10

15

20

25

←
Ite

ra
tio

n
(I

nd
ex

)
i

No Fa
ult

ing

Iterations w.o. Faulting:23

Number of Outer Iterations with and without Faulting
(Pseudo Hessenberg Matrix H̄i(i, j))

23

24

N
um

be
r

of
O

ut
er

Ite
ra

tio
ns

(m
1)

(c) Faulting with:

hi,j = hi,j × ||A||2 × 10−0.5

1 5 10 15 20 25
Iteration (Index) j→

1

5

10

15

20

25

←
Ite

ra
tio

n
(I

nd
ex

)
i

No Fa
ult

ing

Iterations w.o. Faulting:23

Number of Outer Iterations with and without Faulting
(Pseudo Hessenberg Matrix H̄i(i, j))

23

24

N
um

be
r

of
O

ut
er

Ite
ra

tio
ns

(m
1)

(d) Faulting with:

hi,j = hi,j × ||A||2 × 2

Figure 118 Number of outer iterations for multiple faults during orthogonalization (hi,j) of the

inner solver along index i and for various disturbances while solving the ILL_Stokes problem.

In figure 118 faulting along index i with multiple faults is shown during solving the ILL_Stokes

matrix. There is no obvious overhead caused in figure 118, one additional iteration is needed for

the FT-GMRES which is mainly because of achieving the same relative residuum (||r||2 = ||Ax −
b||2/ ||b||2) as the F-GMRES after computation (10−6). The F-GMRES takes 23 outer iterations (m1)

without a fault and for the first trial such that a relative residuum below 10−6 is achieved. Faulting

along index i with multiple faults and with the same error seems to be almost uncritical in figure

118.

Experimental Studies on FT-GMRES Page 167 of 226

9.11.6 Faulting during solving the ILL_Stokes problem along index j - Inner solver ini-

tialized with zero values (and with 25 iterations for the inner solver)

1 5 10 15 20 25
Iteration (Index) j→

1

5

10

15

20

25

←
Ite

ra
tio

n
(I

nd
ex

)
i

No Fa
ult

ing

Iterations w.o. Faulting:23

Number of Outer Iterations with and without Faulting
(Pseudo Hessenberg Matrix H̄j(i, j))

23

24

25

N
um

be
r

of
O

ut
er

Ite
ra

tio
ns

(m
1)

(a) Faulting with:

hi,j = hi,j × ||A||2 × 10−300

1 5 10 15 20 25
Iteration (Index) j→

1

5

10

15

20

25

←
Ite

ra
tio

n
(I

nd
ex

)
i

No Fa
ult

ing

Iterations w.o. Faulting:23

Number of Outer Iterations with and without Faulting
(Pseudo Hessenberg Matrix H̄j(i, j))

23

24

25

26

N
um

be
r

of
O

ut
er

Ite
ra

tio
ns

(m
1)

(b) Faulting with:

hi,j = hi,j × ||A||2 × 1020

1 5 10 15 20 25
Iteration (Index) j→

1

5

10

15

20

25

←
Ite

ra
tio

n
(I

nd
ex

)
i

No Fa
ult

ing

Iterations w.o. Faulting:23

Number of Outer Iterations with and without Faulting
(Pseudo Hessenberg Matrix H̄j(i, j))

23

24

N
um

be
r

of
O

ut
er

Ite
ra

tio
ns

(m
1)

(c) Faulting with:

hi,j = hi,j × ||A||2 × 10−0.5

1 5 10 15 20 25
Iteration (Index) j→

1

5

10

15

20

25

←
Ite

ra
tio

n
(I

nd
ex

)
i

No Fa
ult

ing

Iterations w.o. Faulting:23

Number of Outer Iterations with and without Faulting
(Pseudo Hessenberg Matrix H̄j(i, j))

23

24

N
um

be
r

of
O

ut
er

Ite
ra

tio
ns

(m
1)

(d) Faulting with:

hi,j = hi,j × ||A||2 × 2

Figure 119 Number of outer iterations for multiple faults during orthogonalization (hi,j) of the

inner solver along index j and for various disturbances while solving the ILL_Stokes problem.

In figure 119 faulting along index j with multiple faults is shown during solving the ILL_Stokes

matrix. There is some overhead caused in figure 119b of about 8 % (26/24), one additional iteration

is needed for the FT-GMRES which is mainly because of achieving the same relative residuum

(||r||2 = ||Ax− b||2/ ||b||2) as the F-GMRES after computation (10−6). The F-GMRES takes 23 outer

iterations (m1) without a fault and for the first trial such that a relative residuum below 10−6

is achieved. Faulting along index j with multiple faults seems to be more critical in figure 119

especially in 119b. (Compare with figure 101.)

Experimental Studies on FT-GMRES Page 168 of 226

9.12 Different disturbed Hessenberg matrices for single faults

9.12.1 Introduction

1 5 10 15 20 25
Iteration (Index) j→

1

5

10

15

20

25

←
Ite

ra
tio

n
(In

de
x)
i

Hessenberg Matrix Ĥ(i, j) without a Fault

Non-Zero Values

Figure 120 The final Hessenberg matrix (of the inner solver) without a fault in the case of solving

a symmetric problem, after applying all Givens rotations (see section 5).

1 5 10 15 20 25
Iteration (Index) j→

1

5

10

15

20

25

←
Ite

ra
tio

n
(In

de
x)
i

Hessenberg Matrix Ĥ(i, j) without a Fault

Non-Zero Values

Figure 121 The final Hessenberg matrix (of the inner solver) without a fault in the case of solving

an un-symmetric problem, after applying all Givens rotations (see section 5).

In figure 120 and 121 the final Hessenberg matrices after applying all Givens rotations are

shown, in the case of applying 25 iterations (m2) for the inner solver. Non-zero values of these

matrices where the absolutes magnitudes are greater than a specific value (10−9) are shown with

a blue color in figure 120 and 121. If matrix A is symmetric then the GMRES solver builds a

Hessenberg matrix like in figure 120 otherwise the problem is un-symmetric then matrix Ĥ has an

appearance like in figure 121. Symmetric matrices are problems where the condition of A = AT is

satisfied (, rows and columns are the same). (Hence multiple faults will also change the structure

of the Hessenberg matrix like for faults in section 9.3 which is not shown in this master work).

Experimental Studies on FT-GMRES Page 169 of 226

9.12.2 Different disturbed Hessenberg matrices for solving the 2D Poisson problem

1 5 10 15 20 25
Iteration (Index) j→

1

5

10

15

20

25

←
Ite

ra
tio

n
(In

de
x)
i

Hessenberg Matrix Ĥ(i, j) after a single Fault

Non-Zero Values
Position of a single Fault

(a) Faulting with:

hi,j = hi,j × ||A||2 × 10150

1 5 10 15 20 25
Iteration (Index) j→

1

5

10

15

20

25

←
Ite

ra
tio

n
(In

de
x)
i

Hessenberg Matrix Ĥ(i, j) after a single Fault

Non-Zero Values
Position of a single Fault

(b) Faulting with:

hi,j = hi,j × ||A||2 × 10150

1 5 10 15 20 25
Iteration (Index) j→

1

5

10

15

20

25

←
Ite

ra
tio

n
(In

de
x)
i

Hessenberg Matrix Ĥ(i, j) after a single Fault

Non-Zero Values
Position of a single Fault

(c) Faulting with:

hi,j = hi,j × ||A||2 × 10−300

1 5 10 15 20 25
Iteration (Index) j→

1

5

10

15

20

25

←
Ite

ra
tio

n
(In

de
x)
i

Hessenberg Matrix Ĥ(i, j) after a single Fault

Non-Zero Values
Position of a single Fault

(d) Faulting with:

hi,j = hi,j × ||A||2 × 10−300

Figure 122 Different disturbed Hessenberg matrices (inner solver) for solving the 2D Poisson

problem after a single fault on a specific position (hi,j) in the inner solver of the FT-GMRES.

In figure 122 final Hessenberg matrices after 25 iterations (m2) for a single fault on a specific

position (hi,j) during solving the 2D Poisson matrix are shown. In the case of this symmetric prob-

lem the inner solver of the FT-GMRES also builds a Hessenberg matrix which is at least an upper

Hessenberg matrix but banded (tridiagonal) like in figure 120. Non-zero values which absolute

magnitudes are greater than 10−9 are visualized with a blue color in figure 122 whereas the red

color shows the position for a single fault of hi,j . There is an oblivious change of the structure of

the Hessenberg matrix because of a single fault, this deviation can be used for fault detection.

Experimental Studies on FT-GMRES Page 170 of 226

9.12.3 Different disturbed Hessenberg matrices for solving the Pres_Poisson problem

1 5 10 15 20 25
Iteration (Index) j→

1

5

10

15

20

25

←
Ite

ra
tio

n
(In

de
x)
i

Hessenberg Matrix Ĥ(i, j) after a single Fault

Non-Zero Values
Position of a single Fault

(a) Faulting with:

hi,j = hi,j × ||A||2 × 10150

1 5 10 15 20 25
Iteration (Index) j→

1

5

10

15

20

25

←
Ite

ra
tio

n
(In

de
x)
i

Hessenberg Matrix Ĥ(i, j) after a single Fault

Non-Zero Values
Position of a single Fault

(b) Faulting with:

hi,j = hi,j × ||A||2 × 10150

1 5 10 15 20 25
Iteration (Index) j→

1

5

10

15

20

25

←
Ite

ra
tio

n
(In

de
x)
i

Hessenberg Matrix Ĥ(i, j) after a single Fault

Non-Zero Values
Position of a single Fault

(c) Faulting with:

hi,j = hi,j × ||A||2 × 10−300

1 5 10 15 20 25
Iteration (Index) j→

1

5

10

15

20

25

←
Ite

ra
tio

n
(In

de
x)
i

Hessenberg Matrix Ĥ(i, j) after a single Fault

Non-Zero Values
Position of a single Fault

(d) Faulting with:

hi,j = hi,j × ||A||2 × 10−300

Figure 123 Different disturbed Hessenberg matrices (inner solver) for solving the Pres_Poisson

problem after a single fault on a specific position (hi,j) in the inner solver of the FT-GMRES.

In figure 123 final Hessenberg matrices after 25 iterations (m2) for a single fault on a specific

position (hi,j) during solving the Pres_Poisson matrix are shown. In the case of this symmetric

problem the inner solver of the FT-GMRES also builds a Hessenberg matrix which is at least an up-

per Hessenberg matrix but banded (tridiagonal) like in figure 120. Non-zero values which absolute

magnitudes are greater than 10−9 are visualized with a blue color in figure 123 whereas the red

color shows the position for a single fault of hi,j . There is an oblivious change of the structure of

the Hessenberg matrix because of a single fault, this deviation can be used for fault detection.

Experimental Studies on FT-GMRES Page 171 of 226

9.12.4 Different disturbed Hessenberg matrices for solving the Kuu problem

1 5 10 15 20 25
Iteration (Index) j→

1

5

10

15

20

25

←
Ite

ra
tio

n
(In

de
x)
i

Hessenberg Matrix Ĥ(i, j) after a single Fault

Non-Zero Values
Position of a single Fault

(a) Faulting with:

hi,j = hi,j × ||A||2 × 10150

1 5 10 15 20 25
Iteration (Index) j→

1

5

10

15

20

25

←
Ite

ra
tio

n
(In

de
x)
i

Hessenberg Matrix Ĥ(i, j) after a single Fault

Non-Zero Values
Position of a single Fault

(b) Faulting with:

hi,j = hi,j × ||A||2 × 10150

1 5 10 15 20 25
Iteration (Index) j→

1

5

10

15

20

25

←
Ite

ra
tio

n
(In

de
x)
i

Hessenberg Matrix Ĥ(i, j) after a single Fault

Non-Zero Values
Position of a single Fault

(c) Faulting with:

hi,j = hi,j × ||A||2 × 10−300

1 5 10 15 20 25
Iteration (Index) j→

1

5

10

15

20

25

←
Ite

ra
tio

n
(In

de
x)
i

Hessenberg Matrix Ĥ(i, j) after a single Fault

Non-Zero Values
Position of a single Fault

(d) Faulting with:

hi,j = hi,j × ||A||2 × 10−300

Figure 124 Different disturbed Hessenberg matrices (inner solver) for solving the Kuu problem

after a single fault on a specific position (hi,j) in the inner solver of the FT-GMRES.

In figure 124 final Hessenberg matrices after 25 iterations (m2) for a single fault on a specific

position (hi,j) during solving the Kuu matrix are shown. In the case of this symmetric problem

the inner solver of the FT-GMRES also builds a Hessenberg matrix which is at least an upper

Hessenberg matrix but banded (tridiagonal) like in figure 120. Non-zero values which absolute

magnitudes are greater than 10−9 are visualized with a blue color in figure 124 whereas the red

color shows the position for a single fault of hi,j . There is an oblivious change of the structure of

the Hessenberg matrix because of a single fault, this deviation can be used for fault detection.

Experimental Studies on FT-GMRES Page 172 of 226

9.12.5 Different disturbed Hessenberg matrices for solving the adder_dcop_63 problem

1 5 10 15 20 25
Iteration (Index) j→

1

5

10

15

20

25

←
Ite

ra
tio

n
(In

de
x)
i

Hessenberg Matrix Ĥ(i, j) after a single Fault

Non-Zero Values
Position of a single Fault

(a) Faulting with:

hi,j = hi,j × ||A||2 × 10150

1 5 10 15 20 25
Iteration (Index) j→

1

5

10

15

20

25

←
Ite

ra
tio

n
(In

de
x)
i

Hessenberg Matrix Ĥ(i, j) after a single Fault

Non-Zero Values
Position of a single Fault

(b) Faulting with:

hi,j = hi,j × ||A||2 × 10150

1 5 10 15 20 25
Iteration (Index) j→

1

5

10

15

20

25

←
Ite

ra
tio

n
(In

de
x)
i

Hessenberg Matrix Ĥ(i, j) after a single Fault

Non-Zero Values
Position of a single Fault

(c) Faulting with:

hi,j = hi,j × ||A||2 × 10−300

1 5 10 15 20 25
Iteration (Index) j→

1

5

10

15

20

25

←
Ite

ra
tio

n
(In

de
x)
i

Hessenberg Matrix Ĥ(i, j) after a single Fault

Non-Zero Values
Position of a single Fault

(d) Faulting with:

hi,j = hi,j × ||A||2 × 10−300

Figure 125 Different disturbed Hessenberg matrices (inner solver) for solving the adder_dcop_63

problem after a single fault on a specific position (hi,j) in the inner solver of the FT-GMRES.

In figure 125 final Hessenberg matrices after 25 iterations (m2) for a single fault on a specific

position (hi,j) during solving the adder_dcop_63 matrix are shown. In the case of this un-symmetric

problem which is close to a symmetric problem (see section 9.12.6) the inner solver of the FT-

GMRES builds unexpected a Hessenberg matrix which is at least an upper Hessenberg matrix but

banded (tridiagonal) like in figure 120. Non-zero values which absolute magnitudes are greater

than 10−6 are visualized with a blue color in figure 125 whereas the red color shows the position

for a single fault of hi,j . There is an oblivious change of the structure of the Hessenberg matrix.

Experimental Studies on FT-GMRES Page 173 of 226

9.12.6 Different Hessenberg matrices for solving the adder_dcop_63 problem (no faults)

1 5 10 15 20 25
Iteration (Index) j→

1

5

10

15

20

25

←
Ite

ra
tio

n
(In

de
x)
i

Hessenberg Matrix Ĥ(i, j) without a Fault

Non-Zero Values

(a) Non-zero values are considered as values

where those magnitudes are greater than 10−6.

1 5 10 15 20 25
Iteration (Index) j→

1

5

10

15

20

25

←
Ite

ra
tio

n
(In

de
x)
i

Hessenberg Matrix Ĥ(i, j) without a Fault

Non-Zero Values

(b) Non-zero values are considered as values

where those magnitudes are greater than 10−8.

1 5 10 15 20 25
Iteration (Index) j→

1

5

10

15

20

25

←
Ite

ra
tio

n
(In

de
x)
i

Hessenberg Matrix Ĥ(i, j) without a Fault

Non-Zero Values

(c) Non-zero values are considered as values

where those magnitudes are greater than 10−9.

1 5 10 15 20 25
Iteration (Index) j→

1

5

10

15

20

25

←
Ite

ra
tio

n
(In

de
x)
i

Hessenberg Matrix Ĥ(i, j) without a Fault

Non-Zero Values

(d) Non-zero values are considered as values

where those magnitudes are greater than 10−13.

Figure 126 Different structures of the Hessenberg matrix in the inner solver of the F-GMRES

through solving the adder_dcop_63 problem with values of various magnitudes as non-zero entries.

Figure 126 shows different Hessenberg matrices in the inner solver of the F-GMRES through

solving the adder_dcop_63 problem with values of different magnitudes which are considered as

non-zero entries of matrix Ĥ. This problem is close to a symmetric matrix because matrix A can be

decomposed in a symmetric (Asym) and un-symmetric part (Aunsym) such that Asym = 1
2 (A + AT)

whereas Aunsym = 1
2 (A − AT) [69][76]. It follows that A = Asym + Aunsym then this also leads

to 1 = ||Asym||2/||A||2 + ||Aunsym||2/||A||2 which measures the contribution of each part for matrix

A. In this case ||Asym||2/||A||2 ≈ 1 where ||Aunsym||2/||A||2 ≈ 10−8 such that matrix A is nearly

symmetric, so for this problem the (F-)GMRES builds unexpected a tridiagonal matrix (mainly).

Experimental Studies on FT-GMRES Page 174 of 226

9.12.7 Different disturbed Hessenberg matrices for solving the circuit_2 problem

1 5 10 15 20 25
Iteration (Index) j→

1

5

10

15

20

25

←
Ite

ra
tio

n
(In

de
x)
i

Hessenberg Matrix Ĥ(i, j) after a single Fault

Non-Zero Values
Position of a single Fault

(a) Faulting with:

hi,j = hi,j × ||A||2 × 10150

1 5 10 15 20 25
Iteration (Index) j→

1

5

10

15

20

25

←
Ite

ra
tio

n
(In

de
x)
i

Hessenberg Matrix Ĥ(i, j) after a single Fault

Non-Zero Values
Position of a single Fault

(b) Faulting with:

hi,j = hi,j × ||A||2 × 10150

1 5 10 15 20 25
Iteration (Index) j→

1

5

10

15

20

25

←
Ite

ra
tio

n
(In

de
x)
i

Hessenberg Matrix Ĥ(i, j) after a single Fault

Non-Zero Values
Position of a single Fault

(c) Faulting with:

hi,j = hi,j × ||A||2 × 10−300

1 5 10 15 20 25
Iteration (Index) j→

1

5

10

15

20

25

←
Ite

ra
tio

n
(In

de
x)
i

Hessenberg Matrix Ĥ(i, j) after a single Fault

Non-Zero Values
Position of a single Fault

(d) Faulting with:

hi,j = hi,j × ||A||2 × 10−300

Figure 127 Different disturbed Hessenberg matrices (inner solver) for solving the circuit_2 prob-

lem after a single fault on a specific position (hi,j) in the inner solver of the FT-GMRES.

In figure 127 final Hessenberg matrices after 25 iterations (m2) for a single fault on a specific

position (hi,j) during solving the circuit_2 matrix are shown. In the case of this un-symmetric prob-

lem the inner solver of the FT-GMRES also builds a Hessenberg matrix which is at least an upper

Hessenberg matrix and therefore like in figure 121. Non-zero values which absolute magnitudes

are greater than 10−9 are visualized with a blue color in figure 127 whereas the red color shows the

position for a single fault of hi,j . There is an oblivious change of the structure of the Hessenberg

matrix because of a single fault, this deviation can be used for fault detection.

Experimental Studies on FT-GMRES Page 175 of 226

9.12.8 Different disturbed Hessenberg matrices for solving the mult_dcop_03 problem

1 5 10 15 20 25
Iteration (Index) j→

1

5

10

15

20

25

←
Ite

ra
tio

n
(In

de
x)
i

Hessenberg Matrix Ĥ(i, j) after a single Fault

Non-Zero Values
Position of a single Fault

(a) Faulting with:

hi,j = hi,j × ||A||2 × 10150

1 5 10 15 20 25
Iteration (Index) j→

1

5

10

15

20

25

←
Ite

ra
tio

n
(In

de
x)
i

Hessenberg Matrix Ĥ(i, j) after a single Fault

Non-Zero Values
Position of a single Fault

(b) Faulting with:

hi,j = hi,j × ||A||2 × 10150

1 5 10 15 20 25
Iteration (Index) j→

1

5

10

15

20

25

←
Ite

ra
tio

n
(In

de
x)
i

Hessenberg Matrix Ĥ(i, j) after a single Fault

Non-Zero Values
Position of a single Fault

(c) Faulting with:

hi,j = hi,j × ||A||2 × 10−300

1 5 10 15 20 25
Iteration (Index) j→

1

5

10

15

20

25

←
Ite

ra
tio

n
(In

de
x)
i

Hessenberg Matrix Ĥ(i, j) after a single Fault

Non-Zero Values
Position of a single Fault

(d) Faulting with:

hi,j = hi,j × ||A||2 × 10−300

Figure 128 Different disturbed Hessenberg matrices (inner solver) for solving the mult_dcop_03

problem after a single fault on a specific position (hi,j) in the inner solver of the FT-GMRES.

In figure 128 final Hessenberg matrices after 25 iterations (m2) for a single fault on a specific

position (hi,j) during solving the mult_dcop_03 problem are shown. In the case of this un-symmetric

problem the inner solver of the FT-GMRES also builds a Hessenberg matrix which is at least an

upper Hessenberg matrix and therefore like in figure 121. Non-zero values which absolute mag-

nitudes are greater than 10−9 are visualized with a blue color in figure 128 whereas the red color

shows the position for a single fault of hi,j . There is no change of the structure of the Hessenberg

matrix because of a single fault therefore no fault can be detected in this case.

Experimental Studies on FT-GMRES Page 176 of 226

9.12.9 Different disturbed Hessenberg matrices for solving the chem_master1 problem

1 5 10 15 20 25
Iteration (Index) j→

1

5

10

15

20

25

←
Ite

ra
tio

n
(In

de
x)
i

Hessenberg Matrix Ĥ(i, j) after a single Fault

Non-Zero Values
Position of a single Fault

(a) Faulting with:

hi,j = hi,j × ||A||2 × 10150

1 5 10 15 20 25
Iteration (Index) j→

1

5

10

15

20

25

←
Ite

ra
tio

n
(In

de
x)
i

Hessenberg Matrix Ĥ(i, j) after a single Fault

Non-Zero Values
Position of a single Fault

(b) Faulting with:

hi,j = hi,j × ||A||2 × 10150

1 5 10 15 20 25
Iteration (Index) j→

1

5

10

15

20

25

←
Ite

ra
tio

n
(In

de
x)
i

Hessenberg Matrix Ĥ(i, j) after a single Fault

Non-Zero Values
Position of a single Fault

(c) Faulting with:

hi,j = hi,j × ||A||2 × 10−300

1 5 10 15 20 25
Iteration (Index) j→

1

5

10

15

20

25

←
Ite

ra
tio

n
(In

de
x)
i

Hessenberg Matrix Ĥ(i, j) after a single Fault

Non-Zero Values
Position of a single Fault

(d) Faulting with:

hi,j = hi,j × ||A||2 × 10−300

Figure 129 Different disturbed Hessenberg matrices (inner solver) for solving the chem_master1

problem after a single fault on a specific position (hi,j) in the inner solver of the FT-GMRES.

In figure 129 final Hessenberg matrices after 25 iterations (m2) for a single fault on a specific po-

sition (hi,j) during solving the chem_master1 problem are shown. In the case of this un-symmetric

problem the inner solver of the FT-GMRES also builds a Hessenberg matrix which is at least an

upper Hessenberg matrix and therefore like in figure 121. Non-zero values which absolute mag-

nitudes are greater than 10−9 are visualized with a blue color in figure 129 whereas the red color

shows the position for a single fault of hi,j . There is an oblivious change of the structure of the

Hessengerg matrix because of a single fault, this deviation can be used for fault detection.

Experimental Studies on FT-GMRES Page 177 of 226

9.12.10 Sensibility of banded matrices in the presence of a fault (2D Poisson)

1 5 10 15 20 25
Iteration (Index) j→

1

5

10

15

20

25

←
Ite

ra
tio

n
(In

de
x)
i

Hessenberg Matrix Ĥ(i, j) after a single Fault

Non-Zero Values
Position of a single Fault

(a) Faulting with:

hi,j = hi,j × ||A||2 × 1

1 5 10 15 20 25
Iteration (Index) j→

1

5

10

15

20

25

←
Ite

ra
tio

n
(In

de
x)
i

Hessenberg Matrix Ĥ(i, j) after a single Fault

Non-Zero Values
Position of a single Fault

(b) Faulting with:

hi,j = hi,j × ||A||2 × 0.75

1 5 10 15 20 25
Iteration (Index) j→

1

5

10

15

20

25

←
Ite

ra
tio

n
(In

de
x)
i

Hessenberg Matrix Ĥ(i, j) after a single Fault

Non-Zero Values
Position of a single Fault

(c) Faulting with:

hi,j = hi,j × ||A||2 × 0.5

1 5 10 15 20 25
Iteration (Index) j→

1

5

10

15

20

25

←
Ite

ra
tio

n
(In

de
x)
i

Hessenberg Matrix Ĥ(i, j) after a single Fault

Non-Zero Values
Position of a single Fault

(d) Faulting with:

hi,j = hi,j × ||A||2 × 0.25

Figure 130 Different disturbed Hessenberg matrices (inner solver) for solving the 2D Poisson

problem after a single fault on a specific position (hi,j) in the inner solver of the FT-GMRES.

In figure 130 final Hessenberg matrices after 25 iterations (m2) for a single fault on a specific

position (hi,j) during solving the 2D Poisson matrix are shown. In the case of this symmetric prob-

lem the inner solver of the FT-GMRES also builds a Hessenberg matrix which is at least an upper

Hessenberg matrix but banded (tridiagonal) like in figure 120. Non-zero values which absolute

magnitudes are greater than 10−9 are visualized with a blue color in figure 130 whereas the red

color shows the position for a single fault of hi,j . There is an oblivious change of the structure

of the Hessenberg matrix because of a single fault, this deviation can be used for fault detection.

Figure 130 shows that even small disturbances can change the structure in the presence of a fault.

Experimental Studies on FT-GMRES Page 178 of 226

9.12.11 Sensibility of banded matrices in the presence of a fault (2D Poisson)

1 5 10 15 20 25
Iteration (Index) j→

1

5

10

15

20

25

←
Ite

ra
tio

n
(In

de
x)
i

Hessenberg Matrix Ĥ(i, j) after a single Fault

Non-Zero Values
Position of a single Fault

(a) Faulting with:

hi,j = hi,j × ||A||2 × 1

1 5 10 15 20 25
Iteration (Index) j→

1

5

10

15

20

25

←
Ite

ra
tio

n
(In

de
x)
i

Hessenberg Matrix Ĥ(i, j) after a single Fault

Non-Zero Values
Position of a single Fault

(b) Faulting with:

hi,j = hi,j × ||A||2 × 0.75

1 5 10 15 20 25
Iteration (Index) j→

1

5

10

15

20

25

←
Ite

ra
tio

n
(In

de
x)
i

Hessenberg Matrix Ĥ(i, j) after a single Fault

Non-Zero Values
Position of a single Fault

(c) Faulting with:

hi,j = hi,j × ||A||2 × 0.5

1 5 10 15 20 25
Iteration (Index) j→

1

5

10

15

20

25

←
Ite

ra
tio

n
(In

de
x)
i

Hessenberg Matrix Ĥ(i, j) after a single Fault

Non-Zero Values
Position of a single Fault

(d) Faulting with:

hi,j = hi,j × ||A||2 × 0.25

Figure 131 Different disturbed Hessenberg matrices (inner solver) for solving the 2D Poisson

problem after a single fault on a specific position (hi,j) in the inner solver of the FT-GMRES.

In figure 131 final Hessenberg matrices after 25 iterations (m2) for a single fault on a specific

position (hi,j) during solving the 2D Poisson matrix are shown. In the case of this symmetric prob-

lem the inner solver of the FT-GMRES also builds a Hessenberg matrix which is at least an upper

Hessenberg matrix but banded (tridiagonal) like in figure 120. Non-zero values which absolute

magnitudes are greater than 10−9 are visualized with a blue color in figure 131 whereas the red

color shows the position for a single fault of hi,j . There is an oblivious change of the structure

of the Hessenberg matrix because of a single fault, this deviation can be used for fault detection.

Figure 131 shows that even small disturbances can change the structure in the presence of a fault.

Experimental Studies on FT-GMRES Page 179 of 226

10 Improvements and recommendations for Fault Tolerant

GMRES (FT-GMRES)
10.1 Introduction

This section is mainly dedicated to the FT-GMRES (see section 6.2.4) and how to detect and correct

faults in the inner solver of the FT-GMRES (line 4 of algorithm 14). One obvious disadvantage is

if faults are undetected in the FT-GMRES then these will perhaps lead to a wrong solution in the

inner solver where those uncorrected faults may also increase the number of (outer) iterations for

the outer solver (m1). Furthermore because of the poor preconditioning of the inner solver the

converge speed for computing the solution might degenerates for solving Ax = b. Degeneration

leads to poor preconditioning and to more outer iterations but as well to more operations of the

used solver which is mainly a slow down of the computation speed.

Invariants are variables or conditions that do not change their properties independently of

the computation step which give the possibility to detect specific faults in the inner solver these

invariants can be also used for correcting some faults. Invariants can be also seen as properties

which are don’t allowed to change and are independent. Some invariants which are known so far

are shown in table 7. These give the possibility to detect some specific faults where some of them

are really cheap to compute but others can not be computed efficiently. So if the condition (≤,≥)

of one of these invariants is hurt a correction step must be applied to resilient the related fault for

a better converge speed and to ensure correct results in the inner solver of the FT-GMRES.

One better approach would be to bound errors such that the influence of a fault is totally

negated. There is always the problem if the number of operations is it too high to detect a specific

fault then there is no real decrease in terms of floating point operations but as well a reduce of the

energy requirements. Another question rises if it is really worth to correct every fault since the

overhead through additional operations could be too high which should be avoided.

Description Invariant Correction step

Lose of orthogonality. ||I − qTj qj ||2 ≤ εOrtho Re-orthogonalize H(:, j).

(Not applicable) [48]

Values of Ĥ(i, j). hi,j ≤ ||A||2 Re-orthogonalize H(:, j).

("Applicable") [4]

Explicit residuum. ||rj ||2 = ||b−Axj ||2 Restarting the inner solver. //

(Not applicable) (||rj || ≤ ||rj−1||) (Continue with the outer solver.)

Implicit residuum. ||rj ||2 = ||Ĥ(i : j + 1, 1 : j)y − βe1||2 Restarting the inner solver. //

(Not applicable) ||rj ||2 ≤ ||rj−1||2 (Continue with the outer solver.)

Relative change of ||r||2. 1− ||σj ||22
||σj−1||22

≥ δl [7] Restarting the inner solver. //

(Applicable) ||rj ||2, ||rj−1||2 ≈ ||σj ||22, ||σj−1||22 (Continue with the outer solver.)

Relative change of ||r||2. 1− ||σj ||22
||σ0||22

≤ δg [7] Continue with the inner solver. //

(Applicable) ||r0||2, ||rj ||2 ≈ ||σ0||22, ||σj ||22 Continue with the outer solver.

Table 7 Possible methods to detect and correct faults in the inner solver of the FT-GMRES those

which are known so far (from the authors view). Applicable means in terms of floating point

operations, if the according approach is cheap to apply or not in the sense of flops.

The first possibility would be to check the lose of orthogonality [48] in the GMRES algorithm

(see algorithm 6) of vector qj because it must be satisfied that qTj qj = 1 which is not applicable to

Experimental Studies on FT-GMRES Page 180 of 226

detect faults caused by some bit-flips during computing the Hessenberg matrix. The main reason is

if the vector qj is faulty it is still possible that this vector is orthogonal to itself or to other vectors.

Furthermore finding a good value for εOrtho is hard or the algorithm will always re-orthogonalize

even when no fault is occurred. Therefore checking the lose of orthogonality is not applicable for

detecting faults in the inner solve of the FT-GMRES.

A good way to detect large faults in the Hessenberg matrix Ĥ is using the expression of

hj+1,j ≤ ||A||2 which makes detecting large perturbations (e.g. 1010, 10150) really easy during

the orthogonalization process for computing values for hi,j (line 5 - 10 of algorithm 6). If one of

these values (hi,j) of the Hessenberg matrix Ĥ is greater than the norm (||.||2) of the used matrix

A then a fault occurred during the orthogonalization process (hi,j). This kind of error detecting is

mainly based on applying a norm for the matrix vector product of vj+1 = Aqj which is performed

in the GMRES solver (line 4 of algorithm 6). After applying a norm (||.||2) and knowing the fact

that ||qj ||2 = 1 (in the case of the GMRES) it follows that ||vj+1||2 ≤ ||A||2. From that point it is

obvious that hj+1,j = ||vj+1||2 [4] and with substituting of the inequality this formula is transformed

to hj+1,j ≤ ||A||2 then this also leads to hi,j ≤ ||A||2 because this condition must be satisfied for

each value of the Hessenberg matrix.

Computing the norm of ||.||2 is in general not applicable for large matrices therefore another

norm must be used. If a fault is detected re-orthogonalization must be applied which means that all

values of matrix Ĥ(:, j) must be recomputed (all rows of matrix Ĥ(:, j) at current column position

j) at the current column position and iteration j before the Givens rotation is applied. The norm of

||.||2 for a matrix A can be computed approximately with ||.||2 ≤
√
n × ||.||∞ [6] where n is the size

of matrix A whereas ||.||∞ is the absolute greatest element of matrix A.

The next possibility would be to check the residuals of ||r||2 = ||Ĥ(i : j + 1, 1 : j)y − βe1||2 or

||r||2 = ||Ax − b||2 with comparing two residuals between two iterations (||rj ||2 ≤ ||rj−1||2). If an

increase of the current residual (||rj ||) against the previous (||rj−1||) is detected the inner solver

should be restarted or with the outer solver can be continued. Continue with the outer solver

is not advisable because this will lead to more iterations for the outer solver because of poor

preconditioning of the inner solver. This approach is in general not applicable because it needs

too much operations for the matrix vector products of Ĥ(i : j + 1, 1 : j)y and Ax. Computing

the residuals (||rj ||2) for each iteration j makes the convergence behavior of the solution vector x

observable but this approach cannot be used for error detecting in general because of the fact that

the GMRES algorithm will always try to minimize the implicit (||r||2 = ||Ĥ(i : j + 1, 1 : j)y − βe1||2)

as well the explicit residual (||r||2 = ||Ax − b||) even when the Hessenberg matrix is not correct

because of a fault. Furthermore in the case of the implicit residual the value of β is always fixed

to the normalized value of ||r0||2 (the starting residuum) which leads to the next reason that using

the residuals is not applicable in general.

The approximation error ||σ||22 which is computed in algorithm 5 during applying the Givens

rotation is approximately the same like the residuum such that ||σ||22 ≈ ||r||2 and can be used to build

an indicator to detect a fault in the inner solver of the FT-GMRES. So the value of ||σ||22 can be used

instead of the explicit (||r||2 = ||Ax− b||2) and implicit residuum (||r||2 = ||Ĥ(i : j+ 1, 1 : j)y−βe1||2)

because of a similar behavior in terms of convergence and magnitude like the residuum (||r||2). In

general it helps to decrease the number of floating point operations a lot because computing the

residuum ||r||2 will always need an additional sparse vector product (Ax or Hy). How to compute

the value of ||σ||22 is shown in algorithm 5 with applying the Givens rotation.

With using the approximation errors (||σ||22) it is possible to detect stagnating convergence in

the inner solver of the FT-GMRES between two iterations j and j − 1 if two values ||σj−1||22 and

||σj ||22 are nearly the same (||σj−1||22 ≈ ||σj ||22) such that the solution is not improving anymore this

Experimental Studies on FT-GMRES Page 181 of 226

fact can be used to build an additional error detector δl. It also means that ||σj ||22
||σj−1||22

≈ 1 if both

values are the same and the solution is not converging to a desired value anymore in the inner

solver of the FT-GMRES because the current value of ||σj ||22 and previous computed ||σj−1||22 are

nearly the same such that there is no relevant change between two iterations. So the expression
||σj ||22
||σj−1||22

− 1 = δl checks if ||σj ||22 and ||σj−1||22 are nearly the same such that ||σj ||22
||σj−1||22

≈ 1 and with the

given threshold value δl. Linear dependency follows if δl = 0 whereas δl = 1 means that the last

and previous computed residuum are still the same such that no residual reduction is done.

The previous computed value of ||σj−1||22 ≈ ||rj−1||2 and the current value of ||σj ||22 ≈ ||rj ||2 can

be used as a detector to check if the convergence speed in the inner solver is stagnating. This

method of how to detect stagnating convergence is described in [7]. So if a fault is detected in the

inner solver, this solver can be restarted but by also reusing the current solution computed so far

for the outer solver which should be used as the new start solution of wj(w0), for the next execution

of the inner solver. For example if a fault is detected at iteration j in the inner solver and there are

a certain number iterations at all then the last remaining iterations are used for the next execution

of the inner solver which is done in this master work. The main problem is to find a reasonable

value for δl to check for equality of ||σj ||22 and ||σj−1||22. In general the value of δl can be chosen

arbitrary which is just an scalar. If those eigenvalues (λ) of the used matrix A are known perhaps

a better value can be found for the value of δl. The following equation is related to the converge

behavior (residual reduction) of the GMRES solver for positive definite matrices:

‖rm‖2 ≤
(

1− λ2min(1/2(AT +A))

λmax(ATA)

)m/2
‖r0‖2 [5][3][47] (111)

, where rm denotes the current residuum at iteration m and r0 as the starting residuum, λmin
and λmax are the smallest and greatest eigenvalue (λ) of the used matrix A. This approximation for

the residual reduction needs a transpose of the used matrix A and a sparse matrix multiplication

but also some additions which is not applicable for large matrices because of too much floating

point operations. This formula also says that the residuum (‖rm‖2) always decreases monotonic

with a certain factor. On the other side it should be also possible to detect stagnating convergence

in the inner solver because the residuum (||rm||2) must decrease monotonic for a certain factor

and a specific number of iterations which is shown in formula 111. The main problem is that the

eigenvalues (λ) of matrix A are not known in general, a better approach would be to use formula

112 with the unknown constant ε this is only a factor which determines how much the residuum

‖r0‖2 respective ||σ0||22 should be reduced after m iterations with using the GMRES solver.

‖rm‖2 ≤ ε× ‖r0‖2 (112)

The value of ε mainly depends on the number of iterations and the according convergence rate

of the used solver, therefore this value (ε) is only valid for m iterations and can be computed with

the help of ||rm||2 and ||r0||2. There are maybe some in-accuratenesses which lead to the problem

that in some cases the relation in formula 112 is not satisfied even when the convergence rate is

not decreased because of a to "rough" bound. This formula 112 is just similar to formula 111 but

by knowing nothing about the matrix A and the according eigenvalues (λ) of matrix A.

So a possibility of how to determine the value of δl is shown in section 10.2 where some iter-

ations are done in a failure free execution of the GMRES (F-GMRES) solver to compute the value

of δl. The main idea is just that value of ε should be determined by the solver itself because there

must be a similar residual reduction for each execution of the inner solver of the F-GMRES. From

this point of view it should be perhaps also possible to compute and reuse the value of δl in the

same way and if the value of δl is lower than the computed one then it should indicates a fault.

Experimental Studies on FT-GMRES Page 182 of 226

10.1.1 Faulting without any improvements on a diagonal matrix with high

condition number - Inner solver initialized with zero values

0 25 50 75 100 125 150 175 200
Aggregate Inner Solve Iteration (j) that Faults (m2)

7

8

9

10

11

12

13

14
N

um
be

ro
fO

ut
er

Ite
ra

tio
ns

(m
1) Computations with Faulting of : hi,j = hi,j x ||A||2 x 10150

Outer Iterations without Faulting
Outer Solver - Check for Convergence

Figure 132 Faulting with error type 1 on a diagonal matrix with condition number 1425 on the

first MGS (h1,j). There are no improvements done in the case of the FT-GMRES for fault detection.

0 25 50 75 100 125 150 175 200
Aggregate Inner Solve Iteration (j) that Faults (m2)

7

8

9

10

11

12

13

14

N
um

be
ro

fO
ut

er
Ite

ra
tio

ns
(m

1) Computations with Faulting of : hi,j = hi,j x ||A||2 x 10−300

Outer Iterations without Faulting
Outer Solver - Check for Convergence

Figure 133 Faulting with error type 2 on a diagonal matrix with condition number 1425 on the

first MGS (h1,j). There are no improvements done in the case of the FT-GMRES for fault detection.

In figure 132 and 133 there are no improvements done for the inner solver of the FT-GMRES.

The used matrix is built like in section 7.1 for problem 1 (see formula 102). This diagonal matrix

D has 1000 entries where the lowest value (d1) is set to 1.0 and the greatest (dn) to 1425 which

leads to a matrix with condition number 1425. In both cases the inner solver of the FT-GMRES is

initialized with zero values for vector wj(w0). The relative residuum (||r||2 = ||Ax − b||2/||b||2) is

below 10−9 for all computations and trials. In this case the worst overhead is about 22 % (11/9).

Experimental Studies on FT-GMRES Page 183 of 226

10.1.2 Faulting on a diagonal matrix with high condition number and using the

norm (hi,j ≤ ||A||2) - Inner solver initialized with zero values

0 25 50 75 100 125 150 175 200
Aggregate Inner Solve Iteration (j) that Faults (m2)

7

8

9

10

11

12

13

14
N

um
be

ro
fO

ut
er

Ite
ra

tio
ns

(m
1) Computations with Faulting of : hi,j = hi,j x ||A||2 x 10150

Outer Iterations without Faulting
Outer Solver - Check for Convergence

Figure 134 Faulting with error type 1 on a diagonal matrix with condition number 1425 on the

first MGS (h1,j) and using the norm of matrix A, it is possible to detect perturbations like 10150.

0 25 50 75 100 125 150 175 200
Aggregate Inner Solve Iteration (j) that Faults (m2)

7

8

9

10

11

12

13

14

N
um

be
ro

fO
ut

er
Ite

ra
tio

ns
(m

1) Computations with Faulting of : hi,j = hi,j x ||A||2 x 10−300

Outer Iterations without Faulting
Outer Solver - Check for Convergence

Figure 135 Faulting with error type 2 on a diagonal matrix with condition number 1425 on the

first MGS (h1,j) and using the norm of matrix A, perturbations like 10−300 cannot be detected.

In figure 134 the norm of matrix A is used to detect faults during the orthogonalization process

in the inner solver of the FT-GMRES. If the condition hi,j ≤ ||A||2 is hurt re-orthogonalization is

applied which means that all values of the Hessenberg matrix at current iteration j must be re-

computed (Ĥ(:, j)). It is not possible to detect and correct perturbations like 10−300 which is shown

in figure 135. The used matrix D is built like in section 7.1 for problem 1 (see formula 102). In

both cases the inner solver of the FT-GMRES is initialized with zero values for vector wj(w0).

Experimental Studies on FT-GMRES Page 184 of 226

10.1.3 Faulting on a diagonal matrix with high condition number and using the

relative change (δl) - Inner solver initialized with zero values

0 25 50 75 100 125 150 175 200
Aggregate Inner Solve Iteration (j) that Faults (m2)

7

8

9

10

11

12

13

14
N

um
be

ro
fO

ut
er

Ite
ra

tio
ns

(m
1) Computations with Faulting of : hi,j = hi,j x ||A||2 x 10150

Outer Iterations without Faulting
Outer Solver - Check for Convergence

Figure 136 Faulting with error type 1 on a diagonal matrix with condition number 1425 on the

first MGS (h1,j). In this case all faults are detected in the inner solver of the FT-GMRES.

0 25 50 75 100 125 150 175 200
Aggregate Inner Solve Iteration (j) that Faults (m2)

7

8

9

10

11

12

13

14

N
um

be
ro

fO
ut

er
Ite

ra
tio

ns
(m

1) Computations with Faulting of : hi,j = hi,j x ||A||2 x 10−300

Outer Iterations without Faulting
Outer Solver - Check for Convergence

Figure 137 Faulting with error type 2 on a diagonal matrix with condition number 1425 on the

first MGS (h1,j). In this case all faults are detected in the inner solver of the FT-GMRES.

The relative change δl can be used to correct perturbations like 10150 and 10−300 which is shown

in figure 136 and 137. After a fault is detected restarting of the inner solver is applied with the last

remaining iterations and with the current solution wj . The value of δl is set to 10−1,5 in this case

for fault detection. The used matrix D is built like in section 7.1 for problem 1 (see formula 103).

In both cases the inner solver of the FT-GMRES is initialized with zero values for vector wj(w0). A

similar behavior can be found in section 10.2.8 and 10.2.9 in the case of the 2D Poisson problem.

Experimental Studies on FT-GMRES Page 185 of 226

10.2 Fault detection through the relative change between two residuals
10.2.1 Introduction

One further possibility to detect faults in the inner solver of the FT-GMRES is to observe the relative

change between two residuals with δl like mentioned in section 10.1 but there are some problems

which have to be solved before. In general the eigenvalues (λ) of the used matrix A are not known

and the value of δl for fault detection (see section 10.1) is more or less related to the eigenvalues

(λ) of the used matrix A. One possibility would be for estimating this value δl that the GMRES

or Flexible GMRES can do some iterations in a failure free run without doing too much iterations

then this computed value δl can be maybe used afterwards to detect some faults during solving the

problem of Ax = b with the Fault Tolerant GMRES (FT-GMRES). This is only a possibility at the

moment and not a general approach to solve Ax = b and must be proven. The value of δl which is

computed with 1 − ||σj ||22
||σj−1||22

= δl(j) can be used in different ways, one possibility is just to use the

lowest value of all computed values of δl(1),δl(2),δl(3),. . . ,δl(m) to get the value for δl where restarting

has to be done for the inner solver of the FT-GMRES.

There are different ways but some further experiments and approaches have to be done to im-

prove the computation of δl for fault detection in the FT-GMRES. In general the use of δl will not

detect every fault if the convergence is stagnating in the inner solver of the FT-GMRES but this

value should help to detect and correct some further faults and can be used with other improve-

ments. It is also possible to reuse the computed solution x of the F-GMRES or GMRES which is

computed in a failure free run for the FT-GMRES. This is perhaps a good way to accelerate the

solving process for the FT-GMRES and to lower the number of floating point operations because

in the standard GMRES solver the number of operations tends to increase for each new iteration

through the orthogonalization process. In figure 138 the main concept of how to determine the

value of δl is shown with reusing the solution vector x, this is more or less an idea at the moment.

GMRESmormF-GMRES
(inmhighmreliability)

FT-GMRES

(Reusemvectormxmasmstartingmvectormandmm
δmformerrormdetectionmandmcorrection)

(,computemvectormxmandmδ)

Figure 138 Illustration of a possibility of how to compute the relative change (δl) and with also

reusing the solution vector x of the F-GMRES or GMRES solver for the FT-GMRES.

For the next sections there are different values of δl computed which visualize the relative

change between two residuals (||r||2) respective approximation errors (||σ||22) in the inner solver of

the F(T)-GMRES. These plots also show the value of δl for different trials if the convergence speed

is stagnating in the presence of a single fault in the inner solver of the FT-GMRES. Different pertur-

bations like 10−300 and 10150 are induced in the inner solver of the FT-GMRES on positions of h1,2
during the orthogonalization process for some trials which lead to stagnation of the convergence

speed. Furthermore the value of δl is also computed for the very first (25) iterations in the case of

the GMRES solver, the GMRES solver has always the same initialization as the inner solver.

Experimental Studies on FT-GMRES Page 186 of 226

10.2.2 Computation of the relative change (δl) during solving the 2D Poisson problem

- GMRES and inner solver of F(T)-GMRES initialized with random values

0 5 10 15 20 25
Number of Iteration j (Inner Solver)

10−3

10−2

10−1

100

1
−
||σ

j||
2 2

||σ
j−

1||
2 2

=
δ l

GMRES, Execution with no Faulting
F-GMRES, Execution of the 1st Iteration (Inner Solver) with no Faulting
F-GMRES, Execution of the 15en Iteration (Inner Solver) with no Faulting

F-GMRES, Execution of the 20th Iteration (Inner Solver) with no Faulting
FT-GMRES, Execution of the 1st Iteration (Inner Solver) with Faulting
FT-GMRES, Execution of the 15en Iteration (Inner Solver) with Faulting

FT-GMRES, Execution of the 20th Iteration (Inner Solver) with Faulting

Figure 139 The relative change (δl) in the inner solver of F(T)-GMRES during solving the 2D

Poisson matrix and faulting (single) with hi,j = hi,j × ||A||2 × 10150 for h1,2.

0 5 10 15 20 25
Number of Iteration j (Inner Solver)

10−11

10−10

10−9

10−8

10−7

10−6

10−5

10−4

10−3

10−2

10−1

100

1
−
||σ

j||
2 2

||σ
j−

1||
2 2

=
δ l

GMRES, Execution with no Faulting
F-GMRES, Execution of the 1st Iteration (Inner Solver) with no Faulting
F-GMRES, Execution of the 15en Iteration (Inner Solver) with no Faulting

F-GMRES, Execution of the 20th Iteration (Inner Solver) with no Faulting
FT-GMRES, Execution of the 1st Iteration (Inner Solver) with Faulting
FT-GMRES, Execution of the 15en Iteration (Inner Solver) with Faulting

FT-GMRES, Execution of the 20th Iteration (Inner Solver) with Faulting

Figure 140 The relative change (δl) in the inner solver of F(T)-GMRES during solving the 2D

Poisson matrix and faulting (single) with hi,j = hi,j × ||A||2 × 10−300 for h1,2

In figure 139 and 140 there are some some indexes (3, 6) where the value of δl is lower than

without faulting. It indicates that a fault during the execution of the inner solver occurred so

restarting should be done. The inner solver of F(T)-GMRES is initialized with random values for

vector wj(w0). Both figures visualize the relative change (δl) in the inner solver for different exe-

cutions of it. So each plot shows the relative change for different executions of the inner solver.

Experimental Studies on FT-GMRES Page 187 of 226

10.2.3 Computation of the relative change (δl) during solving the 2D Poisson problem

- GMRES and inner solver of F(T)-GMRES initialized with zero values

0 5 10 15 20 25
Number of Iteration j (Inner Solver)

10−5

10−4

10−3

10−2

10−1

100

1
−
||σ

j||
2 2

||σ
j−

1||
2 2

=
δ l

GMRES, Execution with no Faulting
F-GMRES, Execution of the 1st Iteration (Inner Solver) with no Faulting
F-GMRES, Execution of the 15en Iteration (Inner Solver) with no Faulting

F-GMRES, Execution of the 20th Iteration (Inner Solver) with no Faulting
FT-GMRES, Execution of the 1st Iteration (Inner Solver) with Faulting
FT-GMRES, Execution of the 15en Iteration (Inner Solver) with Faulting

FT-GMRES, Execution of the 20th Iteration (Inner Solver) with Faulting

Figure 141 The relative change (δl) in the inner solver of F(T)-GMRES during solving the 2D

Poisson matrix and faulting (single) with hi,j = hi,j × ||A||2 × 10150 for h1,2.

0 5 10 15 20 25
Number of Iteration j (Inner Solver)

10−11

10−10

10−9

10−8

10−7

10−6

10−5

10−4

10−3

10−2

10−1

100

1
−
||σ

j||
2 2

||σ
j−

1||
2 2

=
δ l

GMRES, Execution with no Faulting
F-GMRES, Execution of the 1st Iteration (Inner Solver) with no Faulting
F-GMRES, Execution of the 15en Iteration (Inner Solver) with no Faulting

F-GMRES, Execution of the 20th Iteration (Inner Solver) with no Faulting
FT-GMRES, Execution of the 1st Iteration (Inner Solver) with Faulting
FT-GMRES, Execution of the 15en Iteration (Inner Solver) with Faulting

FT-GMRES, Execution of the 20th Iteration (Inner Solver) with Faulting

Figure 142 The relative change (δl) in the inner solver of F(T)-GMRES during solving the 2D

Poisson matrix and faulting (single) with hi,j = hi,j × ||A||2 × 10−300 for h1,2.

In figure 141 and 142 there are some indexes (6, 13) where the value of δl is lower than without

faulting. It indicates that a failure during the execution of the inner solver occurred so restarting

should be done. The inner solver of the F(T)-GMRES is initialized with zero values for vector

wj(w0). Both figures visualize the relative change (δl) in the inner solver for different executions of

it. So each plot shows the relative change for different executions of the inner solver.

Experimental Studies on FT-GMRES Page 188 of 226

10.2.4 Computation of all relative changes (δl) during solving the 2D Poisson problem

- GMRES and inner solver of F-GMRES initialized with random and zero values

0 5 10 15 20 25
Number of Iteration j (Inner Solver)

10−2

10−1

100

1
−
||σ

j||
2 2

||σ
j−

1||
2 2

=
δ l

GMRES
F-GMRES, All Executions of the Inner Solver

Figure 143 All relative changes (δl) in the inner solver during solving the 2D Poisson matrix.

The inner solver of the F-GMRES for vector wj(w0) is initialized with random values.

0 5 10 15 20 25
Number of Iteration j (Inner Solver)

10−2

10−1

100

1
−
||σ

j||
2 2

||σ
j−

1||
2 2

=
δ l

GMRES
F-GMRES, All Executions of the Inner Solver

Figure 144 All relative changes (δl) in the inner solver during solving the 2D Poisson matrix.

The inner solver of the F-GMRES for vector wj(w0) is initialized with zero values.

In figure 143 and 144 the value of δl is computed for all executions of the inner solver of the

F-GMRES (with no faulting), in the case of solving the 2D Poisson matrix. The value of δl is also

computed for the GMRES solver, for the very first 25 iterations and with the same initialization as

the inner solver of the F-GMRES for random values but as well with zero values for vector wj(w0).

The color goes from black (first outer iteration - first execution of the inner solver) to white (last

outer iteration - last execution of the inner solver). The value of δl decreases, the solver gets slower.

Experimental Studies on FT-GMRES Page 189 of 226

10.2.5 Computation of the relative change (δl) during solving the adder_dcop_63 problem

- GMRES and inner solver of F(T)-GMRES initialized with random values

0 5 10 15 20 25
Number of Iteration j (Inner Solver)

10−13
10−12
10−11
10−10
10−9
10−8
10−7
10−6
10−5
10−4
10−3
10−2
10−1

100

1
−
||σ

j||
2 2

||σ
j−

1||
2 2

=
δ l

GMRES, Execution with no Faulting
F-GMRES, Execution of the 1st Iteration (Inner Solver) with no Faulting
F-GMRES, Execution of the 15en Iteration (Inner Solver) with no Faulting

F-GMRES, Execution of the 20th Iteration (Inner Solver) with no Faulting
FT-GMRES, Execution of the 1st Iteration (Inner Solver) with Faulting
FT-GMRES, Execution of the 15en Iteration (Inner Solver) with Faulting

FT-GMRES, Execution of the 20th Iteration (Inner Solver) with Faulting

Figure 145 The relative change (δl) in the inner solver of F(T)-GMRES during solving the

adder_dcop_63 matrix and faulting with hi,j = hi,j × ||A||2 × 10150 for h1,2.

0 5 10 15 20 25
Number of Iteration j (Inner Solver)

10−17

10−15

10−13

10−11

10−9

10−7

10−5

10−3

10−1

1
−
||σ

j||
2 2

||σ
j−

1||
2 2

=
δ l

GMRES, Execution with no Faulting
F-GMRES, Execution of the 1st Iteration (Inner Solver) with no Faulting
F-GMRES, Execution of the 15en Iteration (Inner Solver) with no Faulting

F-GMRES, Execution of the 20th Iteration (Inner Solver) with no Faulting
FT-GMRES, Execution of the 1st Iteration (Inner Solver) with Faulting
FT-GMRES, Execution of the 15en Iteration (Inner Solver) with Faulting

FT-GMRES, Execution of the 20th Iteration (Inner Solver) with Faulting

Figure 146 The relative change (δl) in the inner solver of F(T)-GMRES during solving the

adder_dcop_63 matrix and faulting with hi,j = hi,j × ||A||2 × 10−300 for h1,2.

In figure 145 and 146 the adder_dcop_63 matrix is solved which has the ability to tolerate some

faults. It is hard to find a value for δl where restarting should be done because of the shape for δl,

maybe it is not needed. The inner solver of F(T)-GMRES is initialized with random values for vector

wj(w0). Both figures visualize the relative change (δl) in the inner solver for different executions of

it. So each plot shows the relative change for different executions of the inner solver.

Experimental Studies on FT-GMRES Page 190 of 226

10.2.6 Computation of the relative change (δl) during solving the adder_dcop_63 problem

- GMRES and inner solver of F(T)-GMRES initialized with zero values

0 5 10 15 20 25
Number of Iteration j (Inner Solver)

10−13
10−12
10−11
10−10
10−9
10−8
10−7
10−6
10−5
10−4
10−3
10−2
10−1

100

1
−
||σ

j||
2 2

||σ
j−

1||
2 2

=
δ l

GMRES, Execution with no Faulting
F-GMRES, Execution of the 1st Iteration (Inner Solver) with no Faulting
F-GMRES, Execution of the 15en Iteration (Inner Solver) with no Faulting

F-GMRES, Execution of the 20th Iteration (Inner Solver) with no Faulting
FT-GMRES, Execution of the 1st Iteration (Inner Solver) with Faulting
FT-GMRES, Execution of the 15en Iteration (Inner Solver) with Faulting

FT-GMRES, Execution of the 20th Iteration (Inner Solver) with Faulting

Figure 147 The relative change (δl) in the inner solver of F(T)-GMRES during solving the

adder_dcop_63 matrix and faulting (single) with hi,j = hi,j × ||A||2 × 10150 for h1,2.

0 5 10 15 20 25
Number of Iteration j (Inner Solver)

10−17

10−15

10−13

10−11

10−9

10−7

10−5

10−3

10−1

1
−
||σ

j||
2 2

||σ
j−

1||
2 2

=
δ l

GMRES, Execution with no Faulting
F-GMRES, Execution of the 1st Iteration (Inner Solver) with no Faulting
F-GMRES, Execution of the 15en Iteration (Inner Solver) with no Faulting

F-GMRES, Execution of the 20th Iteration (Inner Solver) with no Faulting
FT-GMRES, Execution of the 1st Iteration (Inner Solver) with Faulting
FT-GMRES, Execution of the 15en Iteration (Inner Solver) with Faulting

FT-GMRES, Execution of the 20th Iteration (Inner Solver) with Faulting

Figure 148 The relative change (δl) in the inner solver of F(T)-GMRES during solving the

adder_dcop_63 matrix and faulting (single) with hi,j = hi,j × ||A||2 × 10−300 for h1,2.

In figure 147 and 148 the adder_dcop_63 matrix is solved which has the ability to tolerate some

faults. It is hard to find a value for δl where restarting should be done because of the shape for δl,

maybe it is not needed. The inner solver of F(T)-GMRES is initialized with zero values for vector

wj(w0). Both figures visualize the relative change (δl) in the inner solver for different executions of

it. So each plot shows the relative change for different executions of the inner solver.

Experimental Studies on FT-GMRES Page 191 of 226

10.2.7 Computation of all relative changes (δl) during solving the adder_dcop_63 prob-

lem - GMRES and inner solver of F-GMRES initialized with random/zero values

0 5 10 15 20 25
Number of Iteration j (Inner Solver)

10−8

10−7

10−6

10−5

10−4

10−3

10−2

10−1

100

1
−
||σ

j||
2 2

||σ
j−

1||
2 2

=
δ l

GMRES
F-GMRES, All Executions of the Inner Solver

Figure 149 All relative changes (δl) in the inner solver during solving the adder_dcop_63

matrix. The inner solver of the F-GMRES for vector wj(w0) is initialized with random values.

0 5 10 15 20 25
Number of Iteration j (Inner Solver)

10−8

10−7

10−6

10−5

10−4

10−3

10−2

10−1

100

1
−
||σ

j||
2 2

||σ
j−

1||
2 2

=
δ l

GMRES
F-GMRES, All Executions of the Inner Solver

Figure 150 All relative changes (δl) in the inner solver during solving the adder_dcop_63

matrix. The inner solver of the F-GMRES for vector wj(w0) is initialized with zero values.

In figure 149 and 150 the value of δl is computed for all executions of the inner solver of the

F-GMRES (with no faulting), in the case of solving the adder_dcop_63 matrix. The value of δl is also

computed for the GMRES solver, for the very first 25 iterations and with the same initialization as

the inner solver of the F-GMRES for random values but as well with zero values for vector wj(w0).

The color goes from black (first outer iteration - first execution of the inner solver) to white (last

outer iteration - last execution of the inner solver). The value of δl decreases, the solver gets slower.

Experimental Studies on FT-GMRES Page 192 of 226

10.2.8 Approximation errors with/without correcting stagnating convergence for solving

the 2D Poisson matrix (error type 1) - Inner solver initialized with zero values

0 5 10 15 20 25
Number of Inner Iteration j (m2)

10−1

100

A
p

p
ro

xi
m

a
tio

n
E

rr
o

r
||σ
||2 2

||b
|| 2

Reference without Faulting and with Outer Iterations 10
Faulting at 1st Iteration j on i = 1 (h1,1) and with Outer Iterations 10

Faulting at 2nd Iteration j on i = 1 (h1,2) and with Outer Iterations 13

Faulting at 3rd Iteration j on i = 1 (h1,3) and with Outer Iterations 14

Faulting at 4rd Iteration j on i = 1 (h1,4) and with Outer Iterations 13

Faulting at 5th Iteration j on i = 1 (h1,5) and with Outer Iterations 13

Faulting at 13th Iteration j on i = 1 (h1,13) and with Outer Iterations 12

Faulting at 25th Iteration j on i = 1 (h1,25) and with Outer Iterations 10

(a) Approximation errors (inner solver) for faulting at the fifth execution of the inner solver and

faulting with error type 1 (10150). Faulting is not detected and uncorrected.

0 5 10 15 20 25
Number of Inner Iteration j (m2)

10−1

100

A
p

p
ro

xi
m

a
tio

n
E

rr
o

r
||σ
||2 2

||b
|| 2

Reference without Faulting and with Outer Iterations 10
Faulting at 1st Iteration j on i = 1 (h1,1) and with Outer Iterations 11

Faulting at 2nd Iteration j on i = 1 (h1,2) and with Outer Iterations 12

Faulting at 3rd Iteration j on i = 1 (h1,3) and with Outer Iterations 11

Faulting at 4rd Iteration j on i = 1 (h1,4) and with Outer Iterations 11

Faulting at 5th Iteration j on i = 1 (h1,5) and with Outer Iterations 11

Faulting at 13th Iteration j on i = 1 (h1,13) and with Outer Iterations 11

Faulting at 25th Iteration j on i = 1 (h1,25) and with Outer Iterations 11

(b) Approximation errors (inner solver) for faulting at the fifth execution of the inner solver and

faulting with error type 1 (10150). Faulting is detected and corrected.

Figure 151 Approximation errors for solving the 2D Poisson problem with and without fault

detection. On the top there are no improvements done in contrast to the bottom side.

In figure 151 the 2D Poisson matrix is solved. Faulting is applied during the fifth execution of

the inner solver. On the top in figure 151a there is no fault detection applied in contrast to figure

151b with observing the approximation errors (δl). For fault detection a value of δl = 10−2 is chosen

because the lowest computed value of the F-GMRES for solving this problem is δl ≈ 6× 10−2.

Experimental Studies on FT-GMRES Page 193 of 226

10.2.9 Approximation errors with/without correcting stagnating convergence for solving

the 2D Poisson matrix (error type 2) - Inner solver initialized with zero values

0 5 10 15 20 25
Number of Inner Iteration j (m2)

10−1

100

A
p

p
ro

xi
m

a
tio

n
E

rr
o

r
||σ
||2 2

||b
|| 2

Reference without Faulting and with Outer Iterations 10
Faulting at 1st Iteration j on i = 1 (h1,1) and with Outer Iterations 11

Faulting at 2nd Iteration j on i = 1 (h1,2) and with Outer Iterations 11

Faulting at 3rd Iteration j on i = 1 (h1,3) and with Outer Iterations 10

Faulting at 4rd Iteration j on i = 1 (h1,4) and with Outer Iterations 10

Faulting at 5th Iteration j on i = 1 (h1,5) and with Outer Iterations 10

Faulting at 13th Iteration j on i = 1 (h1,13) and with Outer Iterations 10

Faulting at 25th Iteration j on i = 1 (h1,25) and with Outer Iterations 10

(a) Approximation errors (inner solver) for faulting at the fifth execution of the inner solver and

faulting with error type 2 (10−300). Faulting is not detected and uncorrected.

0 5 10 15 20 25
Number of Inner Iteration j (m2)

10−1

100

A
p

p
ro

xi
m

a
tio

n
E

rr
o

r
||σ
||2 2

||b
|| 2

Reference without Faulting and with Outer Iterations 10
Faulting at 1st Iteration j on i = 1 (h1,1) and with Outer Iterations 10

Faulting at 2nd Iteration j on i = 1 (h1,2) and with Outer Iterations 10

Faulting at 3rd Iteration j on i = 1 (h1,3) and with Outer Iterations 10

Faulting at 4rd Iteration j on i = 1 (h1,4) and with Outer Iterations 10

Faulting at 5th Iteration j on i = 1 (h1,5) and with Outer Iterations 10

Faulting at 13th Iteration j on i = 1 (h1,13) and with Outer Iterations 10

Faulting at 25th Iteration j on i = 1 (h1,25) and with Outer Iterations 10

(b) Approximation errors (inner solver) for faulting at the fifth execution of the inner solver and

faulting with error type 2 (10−300). Faulting is detected and corrected.

Figure 152 Approximation errors for solving the 2D Poisson problem with and without fault

detection. On the top there are no improvements done in contrast to the bottom side.

In figure 152 the 2D Poisson matrix is solved. Faulting is applied during the fifth execution of

the inner solver. On the top in figure 152a there is no fault detection applied in contrast to figure

152b with observing the approximation errors (δl). For fault detection a value of δl = 10−2 is chosen

because the lowest computed value of the F-GMRES for solving this problem is δl ≈ 6× 10−2.

Experimental Studies on FT-GMRES Page 194 of 226

10.2.10 Fault detection during solving the 2D Poisson problem with different values for

the relative change (δl) - Inner solver initialized with zero values

1 5 10 15 20 25
Iteration (Index) j→

1

5

10

15

20

25

←
Ite

ra
tio

n
(In

de
x)
i

No Fa
ult

ing

Iterations w.o. Faulting:10

Number of Outer Iterations with and without Faulting
(Pseudo Hessenberg Matrix H̄(i, j))

10

11

12

13

N
um

be
ro

fO
ut

er
Ite

ra
tio

ns
(m

1)
(a) Faulting with:

hi,j = hi,j × ||A||2 × 10150, δl = 10−2

1 5 10 15 20 25
Iteration (Index) j→

1

5

10

15

20

25

←
Ite

ra
tio

n
(In

de
x)
i

No Fa
ult

ing

Iterations w.o. Faulting:10

Number of Outer Iterations with and without Faulting
(Pseudo Hessenberg Matrix H̄(i, j))

10

11

12

13

14

15

N
um

be
ro

fO
ut

er
Ite

ra
tio

ns
(m

1)

(b) Faulting with:

hi,j = hi,j × ||A||2 × 10150, δl = 10−4

1 5 10 15 20 25
Iteration (Index) j→

1

5

10

15

20

25

←
Ite

ra
tio

n
(In

de
x)
i

No Fa
ult

ing

Iterations w.o. Faulting:10

Number of Outer Iterations with and without Faulting
(Pseudo Hessenberg Matrix H̄(i, j))

10

11

N
um

be
ro

fO
ut

er
Ite

ra
tio

ns
(m

1)

(c) Faulting with:

hi,j = hi,j × ||A||2 × 10−300, δl = 10−2

1 5 10 15 20 25
Iteration (Index) j→

1

5

10

15

20

25

←
Ite

ra
tio

n
(In

de
x)
i

No Fa
ult

ing

Iterations w.o. Faulting:10

Number of Outer Iterations with and without Faulting
(Pseudo Hessenberg Matrix H̄(i, j))

10

11

12

N
um

be
ro

fO
ut

er
Ite

ra
tio

ns
(m

1)

(d) Faulting with:

hi,j = hi,j × ||A||2 × 10−300, δl = 10−4

Figure 153 Fault detection during solving the 2D Poisson matrix with different values for the

relative change (δl). If a fault is detected then the inner solver of the FT-GMRES is restarted with

the last remaining iterations such that the total number of iterations is always the same (25).

In figure 153 different values for δl are used in the FT-GMRES for fault detection while solving

the 2D Poisson problem, this figure shows that a lot of faults can be detected with δl = 10−2 in

contrast to δl = 10−4 for different kinds of faults. Nearly all faults can be detected with δl = 10−2

in figure 153a with observing the relative change between two residuals (δl). Figure 153 shows

fault detection for a single fault in the inner solver of the FT-GMRES. The inner solver of the

Fault Tolerant GMRES (FT-GMRES) is initialized with zero values for vector wj(w0). The relative

residuum (||r||2 = ||Ax− b||2/||b||2) is below 10−9 for all trials and computations.

Experimental Studies on FT-GMRES Page 195 of 226

10.2.11 Some notes on the parameters for fault detection in the case of the FT-GMRES

In general observing the residual change (δl) for fault protection needs a lot of knowledge for the

used problem which makes this approach really hard to apply, so this approach should be only used

if the convergence behavior is already known for the according matrix A. In the case of solving

the 2D Poisson problem with the FT-GMRES solver the inner solver could be protected from a

single fault but not in every case which is shown in figure 153 which depends on the value for δl
where restarting of the inner solver of the FT-GMRES should be done. In the case of solving the

adder_dcop_63 matrix it was not possible to find any reasonable value for δl where restarting of

the inner solver should be done because of the shape for δl which is shown in figure 148 and 146.

This is mainly related to the fact that the convergence speed in the inner solver of the F(T)-

GMRES is not always the same especially in the case of solving the adder_dcop_63 matrix. In

general the change of the residuals respective approximation errors is just crucial for applying

fault detection with observing the relative change (δl) because if the residual reduction from one

iteration to the next iteration is far away of being constant or not within a specific (small) range of

values then it is hard to find a reasonable value for δl where restarting of the inner solver should

be done.

So only in the case of solving the 2D Poisson problem the inner solver could be protected from

a single fault if the FT-GMRES solver is used. For solving the 2D Poisson problem with the FT-

GMRES the value of δl for restarting the inner solver of the FT-GMRES is chosen such that this

value is lower than all computed values of δl with the F-GMRES while solving the same problem.

In figure 153 a value of 10−2 and 10−4 is chosen for δl where restarting of the inner solver of

the FT-GMRES should be done which is lower than all computed values of δl with the F-GMRES

(δl ≈ 6× 10−2).

This idea in section 10.2.1 and figure 138 can be discarded because the value of δl changes in

general for each outer iteration respective execution of the inner solver of the F-GMRES. Further-

more if the shape for δl changes too much for the according matrix then no reasonable value can

be applied where restarting should be done for the inner solver of the FT-GMRES. Solving the 2D

Poisson matrix with detecting stagnating converge is just an exception where this kind of approach

can be used maybe there are other problems where this approach can be applied.

Experimental Studies on FT-GMRES Page 196 of 226

10.3 Fault detection through checking the structure of matrix Ĥ

10.3.1 Introduction

One further possibility to detect faults in the inner solver of the FT-GMRES (line 4 of algorithm

14) is to check the structure of the Hessenberg matrix after applying the Givens rotation (see

algorithm 5) but because of the fact that there can be two different structures for the Hessenberg

matrix there must be two cases considered depending on the properties of matrix A.

In the general case an upper Hessenberg matrix will be built like in formula 114 shown for

10 iterations after applying the Givens rotation which deletes non-zero elements below the main

diagonal. For symmetric problems if following property holds such that A = AT where matrix A

and the according transposed matrix AT are the same if rows and columns are exchanged then

a tridiagonal or band matrix after applying the Givens rotation will be built like in formula 113,

before applying the Givens rotation it is indeed a tridiagonal matrix like in formula 105.

Tridiagonal matrix (Banded matrix) - after all Givens rotations

→ Iteration (Index) j

Ĥ(i, j) =

→
Ite

ra
tio

n
(In

d
e
x)

i



x x x 0 0 0 0 0 0 0

0 x x x 0 0 0 0 0 0

0 0 x x x 0 0 0 0 0

0 0 0 x x x 0 0 0 0

0 0 0 0 x x x 0 0 0

0 0 0 0 0 x x x 0 0

0 0 0 0 0 0 x x x 0

0 0 0 0 0 0 0 x x x

0 0 0 0 0 0 0 0 x x

0 0 0 0 0 0 0 0 0 x


(113)

Upper Hessenberg matrix - after all Givens rotations

→ Iteration (Index) j

Ĥ(i, j) =

→
Ite

ra
tio

n
(In

d
e
x)

i



x x x x x x x x x x

0 x x x x x x x x x

0 0 x x x x x x x x

0 0 0 x x x x x x x

0 0 0 0 x x x x x x

0 0 0 0 0 x x x x x

0 0 0 0 0 0 x x x x

0 0 0 0 0 0 0 x x x

0 0 0 0 0 0 0 0 x x

0 0 0 0 0 0 0 0 0 x


(114)

In the case of a banded or tridiagonal matrix like in formula 113 the total number of non-zero

elements can be checked but also the non-zero values for each row can be verified which must

be in this case 1 up to 3 depending on the according row number and iteration. In contrast of an

upper Hessenberg matrix like in formula 114 the total number of non-zero elements can be as well

verified which are for each iteration j exactly 0.5j(j + 1). Values where the absolute magnitudes

are greater than 10−9 are considered as non-zero entries marked with "x" in formula 113 and 114.

Experimental Studies on FT-GMRES Page 197 of 226

10.3.2 Absolute lowest value of the Hessenberg matrix in the inner solver of the F-

GMRES for solving different problems - Inner solver initialized with zero values

1 6 11 16 21 26 31 36
Number of Outer Iteration j (Execution of the Inner Solver)

10−10
10−9
10−8
10−7
10−6
10−5
10−4
10−3
10−2
10−1

100
101
102

A
bs

ol
ut

e
lo

w
es

tV
al

ue
of
Ĥ

(1
:
j,

1
:
j)

Abs. lowest Value of Ĥ(1 : j, 1 : j) (Band Part) for Solving the 2D Poisson Matrix (Inner Solver)

Abs. lowest Value of Ĥ(1 : j, 1 : j) (Band Part) for Solving the Pres Poisson Matrix (Inner Solver)

Abs. lowest Value of Ĥ(1 : j, 1 : j) (Band Part) for Solving the Kuu Matrix (Inner Solver)

Abs. lowest Value of Ĥ(1 : j, 1 : j) (Band Part) for Solving the Na5 Matrix (Inner Solver)

Abs. lowest Value of Ĥ(1 : j, 1 : j) (Band Part) for Solving the adder dcop 63 Matrix (Inner Solver)

Figure 154 Absolute lowest value of the Hessenberg matrix (band part of Ĥ(1 : j, 1 : j), see

formula 113) in the inner solver of the F-GMRES for solving different (un-)symmetric problems.

1 6 11 16 21 26 31 36 41 46
Number of Outer Iteration j (Execution of the Inner Solver)

10−15
10−14
10−13
10−12
10−11
10−10
10−9
10−8
10−7
10−6
10−5
10−4
10−3
10−2
10−1

100

A
bs

ol
ut

e
lo

w
es

tV
al

ue
of
Ĥ

(1
:
j,

1
:
j)

Abs. lowest Value of Ĥ(1 : j, 1 : j) for Solving the circuit 2 Matrix (Inner Solver)

Abs. lowest Value of Ĥ(1 : j, 1 : j) for Solving the mult dcop 03 Matrix (Inner Solver)

Abs. lowest Value of Ĥ(1 : j, 1 : j) for Solving the chem master 1 Matrix (Inner Solver)

Abs. lowest Value of Ĥ(1 : j, 1 : j) for Solving the Ill Stokes Matrix (Inner Solver)

Figure 155 Absolute lowest value of the Hessenberg matrix (upper triangular part of Ĥ(1 : j, 1 : j),

see formula 114) in the inner solver of the F-GMRES for solving different un-symmetric problems.

In figure 154 and 155 the absolute lowest value of the Hessenberg matrix is shown for different

problems (symmetric and un-symmetric) and for each execution of the inner solver of the F-GMRES

such that a specific accuracy is achieved. In the case of solving a symmetric problem only the band

part is considered after applying all Givens rotations and in the case of solving an un-symmetric

problem the whole upper triangular part is taken for computing the absolute lowest value of Ĥ(1 :

j, 1 : j). For all problems in figure 154 and 155 the inner solver does 25 iterations. For solving the

adder_dcop_63 problem the inner solver builds unexpected a tridiagonal matrix (see figure 126).

Experimental Studies on FT-GMRES Page 198 of 226

10.3.3 Absolute largest value of the Hessenberg matrix in the inner solver of the F-

GMRES for solving different problems - Inner solver initialized with zero values

1 6 11 16 21 26 31 36
Number of Outer Iteration j (Execution of the Inner Solver)

10−2

10−1

100

101

102
A

bs
ol

ut
e

la
rg

es
tV

al
ue

of
Ĥ

(1
:
j,

1
:
j)

Abs. largest Value of Ĥ(1 : j, 1 : j) (Band Part) for Solving the 2D Poisson Matrix (Inner Solver)

Abs. largest Value of Ĥ(1 : j, 1 : j) (Band Part) for Solving the Pres Poisson Matrix (Inner Solver)

Abs. largest Value of Ĥ(1 : j, 1 : j) (Band Part) for Solving the Kuu Matrix (Inner Solver)

Abs. largest Value of Ĥ(1 : j, 1 : j) (Band Part) for Solving the Na5 Matrix (Inner Solver)

Abs. largest Value of Ĥ(1 : j, 1 : j) (Band Part) for Solving the adder dcop 63 Matrix (Inner Solver)

Figure 156 Absolute largest value of the Hessenberg matrix (band part of Ĥ(1 : j, 1 : j), see

formula 113) in the inner solver of the F-GMRES for solving different (un-)symmetric problems.

1 6 11 16 21 26 31 36 41 46
Number of Outer Iteration j (Execution of the Inner Solver)

100

101

102

103

104

105

106

A
bs

ol
ut

e
la

rg
es

tV
al

ue
of
Ĥ

(1
:
j,

1
:
j)

Abs. largest Value of Ĥ(1 : j, 1 : j) for Solving the circuit 2 Matrix (Inner Solver)

Abs. largest Value of Ĥ(1 : j, 1 : j) for Solving the mult dcop 03 Matrix (Inner Solver)

Abs. largest Value of Ĥ(1 : j, 1 : j) for Solving the chem master 1 Matrix (Inner Solver)

Abs. largest Value of Ĥ(1 : j, 1 : j) for Solving the Ill Stokes Matrix (Inner Solver)

Figure 157 Absolute largest value of the Hessenberg matrix (upper triangular part of Ĥ(1 : j, 1 : j),

see formula 114) in the inner solver of the F-GMRES for solving different un-symmetric problems.

In figure 156 and 157 the absolute largest value of the Hessenberg matrix is shown for different

problems (symmetric and un-symmetric) and for each execution of the inner solver of the F-GMRES

such that a specific accuracy is achieved. In the case of solving a symmetric problem the whole

upper triangular matrix is considered after applying all Givens rotations and as well as in the case

of solving an un-symmetric problem for computing the absolute largest value of Ĥ(1 : j, 1 : j). For

all problems in figure 156 and 157 the inner solver does 25 iterations. In the case of solving the

adder_dcop_63 problem the inner solver builds unexpected a tridiagonal matrix (see figure 126).

Experimental Studies on FT-GMRES Page 199 of 226

10.3.4 Fault detection during solving the 2D Poisson problem with checking the struc-

ture of the Hessenberg matrix - Inner solver initialized with zero values

1 5 10 15 20 25
Iteration (Index) j→

1

5

10

15

20

25

←
Ite

ra
tio

n
(I

nd
ex

)
i

No Fa
ult

ing

Iterations w.o. Faulting:10

Number of Outer Iterations with and without Faulting
(Pseudo Hessenberg Matrix H̄(i, j))

10

11

N
um

be
r

of
O

ut
er

Ite
ra

tio
ns

(m
1)

(a) Faulting with:

hi,j = hi,j × ||A||2 × 10150

1 5 10 15 20 25
Iteration (Index) j→

1

5

10

15

20

25

←
Ite

ra
tio

n
(I

nd
ex

)
i

No Fa
ult

ing

Iterations w.o. Faulting:10

Number of Outer Iterations with and without Faulting
(Pseudo Hessenberg Matrix H̄(i, j))

10

11

N
um

be
r

of
O

ut
er

Ite
ra

tio
ns

(m
1)

(b) Faulting with:

hi,j = hi,j × ||A||2 × 10−300

1 5 10 15 20 25
Iteration (Index) j→

1

5

10

15

20

25

←
Ite

ra
tio

n
(I

nd
ex

)
i

No Fa
ult

ing

Iterations w.o. Faulting:10

Number of Outer Iterations with and without Faulting
(Pseudo Hessenberg Matrix H̄(i, j))

10

11

N
um

be
r

of
O

ut
er

Ite
ra

tio
ns

(m
1)

(c) Faulting with:

hi,j = hi,j × ||A||2 × 1010

1 5 10 15 20 25
Iteration (Index) j→

1

5

10

15

20

25

←
Ite

ra
tio

n
(I

nd
ex

)
i

No Fa
ult

ing

Iterations w.o. Faulting:10

Number of Outer Iterations with and without Faulting
(Pseudo Hessenberg Matrix H̄(i, j))

10

11

N
um

be
r

of
O

ut
er

Ite
ra

tio
ns

(m
1)

(d) Faulting with:

hi,j = hi,j × ||A||2 × 10−0.5

Figure 158 Fault detection during solving the 2D Poisson problem for different kinds of faults with

checking the structure of the Hessenberg matrix in the inner solver of the FT-GMRES.

In figure 158 fault detection during solving the 2D Poisson problem is shown. For this matrix

the inner solver of the FT-GMRES builds a tridiagonal or band matrix like in formula 113 in the case

of this symmetric problem. The FT-GMRES takes 10 outer iterations (m1) without a fault whereas

25 iterations are set for the inner solver (m2). All faults in the inner solver of the FT-GMRES

are corrected with restarting the inner solver at the current iteration j and reusing the solution

(wj). Values of Ĥ where the absolute magnitudes are greater than 10−9 are considered as non-zero

values. Fault detection is mainly applied for single faults in figure 158 for each position of hi,j . The

relative residuum (||r||2 = ||Ax− b||2/||b||2) of all trials and computations is below 10−9.

Experimental Studies on FT-GMRES Page 200 of 226

10.3.5 Fault detection during solving the Pres_Poisson problem with checking the struc-

ture of the Hessenberg matrix - Inner solver initialized with zero values

1 5 10 15 20 25
Iteration (Index) j→

1

5

10

15

20

25

←
Ite

ra
tio

n
(I

nd
ex

)
i

No Fa
ult

ing

Iterations w.o. Faulting:30

Number of Outer Iterations with and without Faulting
(Pseudo Hessenberg Matrix H̄(i, j))

30

31

N
um

be
r

of
O

ut
er

Ite
ra

tio
ns

(m
1)

(a) Faulting with:

hi,j = hi,j × ||A||2 × 10150

1 5 10 15 20 25
Iteration (Index) j→

1

5

10

15

20

25

←
Ite

ra
tio

n
(I

nd
ex

)
i

No Fa
ult

ing

Iterations w.o. Faulting:30

Number of Outer Iterations with and without Faulting
(Pseudo Hessenberg Matrix H̄(i, j))

30

31

N
um

be
r

of
O

ut
er

Ite
ra

tio
ns

(m
1)

(b) Faulting with:

hi,j = hi,j × ||A||2 × 10−300

1 5 10 15 20 25
Iteration (Index) j→

1

5

10

15

20

25

←
Ite

ra
tio

n
(I

nd
ex

)
i

No Fa
ult

ing

Iterations w.o. Faulting:30

Number of Outer Iterations with and without Faulting
(Pseudo Hessenberg Matrix H̄(i, j))

30

31

N
um

be
r

of
O

ut
er

Ite
ra

tio
ns

(m
1)

(c) Faulting with:

hi,j = hi,j × ||A||2 × 1010

1 5 10 15 20 25
Iteration (Index) j→

1

5

10

15

20

25

←
Ite

ra
tio

n
(I

nd
ex

)
i

No Fa
ult

ing

Iterations w.o. Faulting:30

Number of Outer Iterations with and without Faulting
(Pseudo Hessenberg Matrix H̄(i, j))

30

31

N
um

be
r

of
O

ut
er

Ite
ra

tio
ns

(m
1)

(d) Faulting with:

hi,j = hi,j × ||A||2 × 10−0.5

Figure 159 Fault detection during solving the Pres_Poisson problem for different kinds of faults

with checking the structure of the Hessenberg matrix in the inner solver of the FT-GMRES.

In figure 159 fault detection during solving the Pres_Poisson problem is shown. For this matrix

the inner solver of the FT-GMRES builds a tridiagonal or band matrix like in formula 113 in the case

of this symmetric problem. The FT-GMRES takes 30 outer iterations (m1) without a fault whereas

25 iterations are set for the inner solver (m2). All faults in the inner solver of the FT-GMRES

are corrected with restarting the inner solver at the current iteration j and reusing the solution

(wj). Values of Ĥ where the absolute magnitudes are greater than 10−9 are considered as non-zero

values. Fault detection is mainly applied for single faults in figure 159 for each position of hi,j . The

relative residuum (||r||2 = ||Ax− b||2/||b||2) of all trials and computations is below 10−6.

Experimental Studies on FT-GMRES Page 201 of 226

10.3.6 Fault detection during solving the Kuu problem with checking the structure of

the Hessenberg matrix - Inner solver initialized with zero values

1 5 10 15 20 25
Iteration (Index) j→

1

5

10

15

20

25

←
Ite

ra
tio

n
(I

nd
ex

)
i

No Fa
ult

ing

Iterations w.o. Faulting:25

Number of Outer Iterations with and without Faulting
(Pseudo Hessenberg Matrix H̄(i, j))

25

26

N
um

be
r

of
O

ut
er

Ite
ra

tio
ns

(m
1)

(a) Faulting with:

hi,j = hi,j × ||A||2 × 10150

1 5 10 15 20 25
Iteration (Index) j→

1

5

10

15

20

25

←
Ite

ra
tio

n
(I

nd
ex

)
i

No Fa
ult

ing

Iterations w.o. Faulting:25

Number of Outer Iterations with and without Faulting
(Pseudo Hessenberg Matrix H̄(i, j))

25

26

N
um

be
r

of
O

ut
er

Ite
ra

tio
ns

(m
1)

(b) Faulting with:

hi,j = hi,j × ||A||2 × 10−300

1 5 10 15 20 25
Iteration (Index) j→

1

5

10

15

20

25

←
Ite

ra
tio

n
(I

nd
ex

)
i

No Fa
ult

ing

Iterations w.o. Faulting:25

Number of Outer Iterations with and without Faulting
(Pseudo Hessenberg Matrix H̄(i, j))

25

26

N
um

be
r

of
O

ut
er

Ite
ra

tio
ns

(m
1)

(c) Faulting with:

hi,j = hi,j × ||A||2 × 1010

1 5 10 15 20 25
Iteration (Index) j→

1

5

10

15

20

25

←
Ite

ra
tio

n
(I

nd
ex

)
i

No Fa
ult

ing

Iterations w.o. Faulting:25

Number of Outer Iterations with and without Faulting
(Pseudo Hessenberg Matrix H̄(i, j))

25

26

N
um

be
r

of
O

ut
er

Ite
ra

tio
ns

(m
1)

(d) Faulting with:

hi,j = hi,j × ||A||2 × 10−0.5

Figure 160 Fault detection during solving the Kuu problem for different kinds of faults with check-

ing the structure of the Hessenberg matrix in the inner solver of the FT-GMRES.

In figure 160 fault detection during solving the Kuu problem is shown. For this matrix the

inner solver of the FT-GMRES builds a tridiagonal or band matrix like in formula 113 in the case

of this symmetric problem. The FT-GMRES takes 25 outer iterations (m1) without a fault whereas

25 iterations are set for the inner solver (m2). All faults in the inner solver of the FT-GMRES

are corrected with restarting the inner solver at the current iteration j and reusing the solution

(wj). Values of Ĥ where the absolute magnitudes are greater than 10−9 are considered as non-zero

values. Fault detection is mainly applied for single faults in figure 160 for each position of hi,j . The

relative residuum (||r||2 = ||Ax− b||2/||b||2) of all trials and computations is below 10−9.

Experimental Studies on FT-GMRES Page 202 of 226

10.3.7 Fault detection during solving the Na5 problem with checking the structure of

the Hessenberg matrix - Inner solver initialized with zero values

1 5 10 15 20 25
Iteration (Index) j→

1

5

10

15

20

25

←
Ite

ra
tio

n
(I

nd
ex

)
i

No Fa
ult

ing

Iterations w.o. Faulting:20

Number of Outer Iterations with and without Faulting
(Pseudo Hessenberg Matrix H̄(i, j))

20

21

22

23

24

N
um

be
r

of
O

ut
er

Ite
ra

tio
ns

(m
1)

(a) Faulting with:

hi,j = hi,j × ||A||2 × 10150

1 5 10 15 20 25
Iteration (Index) j→

1

5

10

15

20

25

←
Ite

ra
tio

n
(I

nd
ex

)
i

No Fa
ult

ing

Iterations w.o. Faulting:20

Number of Outer Iterations with and without Faulting
(Pseudo Hessenberg Matrix H̄(i, j))

20

21

22

23

24

N
um

be
r

of
O

ut
er

Ite
ra

tio
ns

(m
1)

(b) Faulting with:

hi,j = hi,j × ||A||2 × 10−300

1 5 10 15 20 25
Iteration (Index) j→

1

5

10

15

20

25

←
Ite

ra
tio

n
(I

nd
ex

)
i

No Fa
ult

ing

Iterations w.o. Faulting:20

Number of Outer Iterations with and without Faulting
(Pseudo Hessenberg Matrix H̄(i, j))

20

21

22

23

N
um

be
r

of
O

ut
er

Ite
ra

tio
ns

(m
1)

(c) Faulting with:

hi,j = hi,j × ||A||2 × 1010

1 5 10 15 20 25
Iteration (Index) j→

1

5

10

15

20

25

←
Ite

ra
tio

n
(I

nd
ex

)
i

No Fa
ult

ing

Iterations w.o. Faulting:20

Number of Outer Iterations with and without Faulting
(Pseudo Hessenberg Matrix H̄(i, j))

20

21

22

23

N
um

be
r

of
O

ut
er

Ite
ra

tio
ns

(m
1)

(d) Faulting with:

hi,j = hi,j × ||A||2 × 10−0.5

Figure 161 Fault detection during solving the Na5 problem for different kinds of faults with check-

ing the structure of the Hessenberg matrix in the inner solver of the FT-GMRES.

In figure 161 fault detection during solving the Na5 problem is shown. For this matrix the

inner solver of the FT-GMRES builds a tridiagonal or band matrix like in formula 113 in the case

of this symmetric problem. The FT-GMRES takes 20 outer iterations (m1) without a fault whereas

25 iterations are set for the inner solver (m2). Some faults in the inner solver of the FT-GMRES

are corrected with restarting the inner solver at the current iteration j and reusing the solution

(wj). Values of Ĥ where the absolute magnitudes are greater than 10−9 are considered as non-zero

values. Fault detection is mainly applied for single faults in figure 161 for each position of hi,j . The

relative residuum (||r||2 = ||Ax− b||2/||b||2) of all trials and computations is below 10−9.

Experimental Studies on FT-GMRES Page 203 of 226

10.3.8 Fault detection during solving the adder_dcop_63 problem with checking the struc-

ture of the Hessenberg matrix - Inner solver initialized with zero values

1 5 10 15 20 25
Iteration (Index) j→

1

5

10

15

20

25

←
Ite

ra
tio

n
(I

nd
ex

)
i

No Fa
ult

ing

Iterations w.o. Faulting:32

Number of Outer Iterations with and without Faulting
(Pseudo Hessenberg Matrix H̄(i, j))

32

33

34

N
um

be
r

of
O

ut
er

Ite
ra

tio
ns

(m
1)

(a) Faulting with:

hi,j = hi,j × ||A||2 × 10150

1 5 10 15 20 25
Iteration (Index) j→

1

5

10

15

20

25

←
Ite

ra
tio

n
(I

nd
ex

)
i

No Fa
ult

ing

Iterations w.o. Faulting:32

Number of Outer Iterations with and without Faulting
(Pseudo Hessenberg Matrix H̄(i, j))

32

33

N
um

be
r

of
O

ut
er

Ite
ra

tio
ns

(m
1)

(b) Faulting with:

hi,j = hi,j × ||A||2 × 10−300

1 5 10 15 20 25
Iteration (Index) j→

1

5

10

15

20

25

←
Ite

ra
tio

n
(I

nd
ex

)
i

No Fa
ult

ing

Iterations w.o. Faulting:32

Number of Outer Iterations with and without Faulting
(Pseudo Hessenberg Matrix H̄(i, j))

32

33

N
um

be
r

of
O

ut
er

Ite
ra

tio
ns

(m
1)

(c) Faulting with:

hi,j = hi,j × ||A||2 × 1010

1 5 10 15 20 25
Iteration (Index) j→

1

5

10

15

20

25

←
Ite

ra
tio

n
(I

nd
ex

)
i

No Fa
ult

ing

Iterations w.o. Faulting:32

Number of Outer Iterations with and without Faulting
(Pseudo Hessenberg Matrix H̄(i, j))

32

33

N
um

be
r

of
O

ut
er

Ite
ra

tio
ns

(m
1)

(d) Faulting with:

hi,j = hi,j × ||A||2 × 10−0.5

Figure 162 Fault detection during solving the adder_dcop_63 problem for different kinds of faults

with checking the structure of the Hessenberg matrix in the inner solver of the FT-GMRES.

In figure 162 fault detection during solving the adder_dcop_63 matrix is shown. For this matrix

the inner solver of the FT-GMRES builds a tridiagonal or band matrix like in formula 113 in the

case of this un-symmetric problem which is unexpected. The FT-GMRES takes 32 outer iterations

(m1) without a fault whereas 25 iterations are set for the inner solver. Nearly all faults in the inner

solver of the FT-GMRES are corrected with restarting the inner solver at iteration j and reusing

the solution (wj). Values of Ĥ where the absolute magnitudes are greater than 10−6 are considered

as non-zero values. Fault detection is mainly applied for single faults in figure 162 for each position

of hi,j . The relative residuum (||r||2 = ||Ax− b||2/||b||2) of all trials and computations is below 10−9.

Experimental Studies on FT-GMRES Page 204 of 226

10.3.9 Fault detection during solving the circuit_2 problem with checking the structure

of the Hessenberg matrix - Inner solver initialized with zero values

1 5 10 15 20 25
Iteration (Index) j→

1

5

10

15

20

25

←
Ite

ra
tio

n
(I

nd
ex

)
i

No Fa
ult

ing

Iterations w.o. Faulting:28

Number of Outer Iterations with and without Faulting
(Pseudo Hessenberg Matrix H̄(i, j))

28

29

N
um

be
r

of
O

ut
er

Ite
ra

tio
ns

(m
1)

(a) Faulting with:

hi,j = hi,j × ||A||2 × 10150

1 5 10 15 20 25
Iteration (Index) j→

1

5

10

15

20

25

←
Ite

ra
tio

n
(I

nd
ex

)
i

No Fa
ult

ing

Iterations w.o. Faulting:28

Number of Outer Iterations with and without Faulting
(Pseudo Hessenberg Matrix H̄(i, j))

28

29

30

31

32

N
um

be
r

of
O

ut
er

Ite
ra

tio
ns

(m
1)

(b) Faulting with:

hi,j = hi,j × ||A||2 × 10−300

1 5 10 15 20 25
Iteration (Index) j→

1

5

10

15

20

25

←
Ite

ra
tio

n
(I

nd
ex

)
i

No Fa
ult

ing

Iterations w.o. Faulting:28

Number of Outer Iterations with and without Faulting
(Pseudo Hessenberg Matrix H̄(i, j))

28

29

N
um

be
r

of
O

ut
er

Ite
ra

tio
ns

(m
1)

(c) Faulting with:

hi,j = hi,j × ||A||2 × 1010

1 5 10 15 20 25
Iteration (Index) j→

1

5

10

15

20

25

←
Ite

ra
tio

n
(I

nd
ex

)
i

No Fa
ult

ing

Iterations w.o. Faulting:28

Number of Outer Iterations with and without Faulting
(Pseudo Hessenberg Matrix H̄(i, j))

28

29

30

31

32

N
um

be
r

of
O

ut
er

Ite
ra

tio
ns

(m
1)

(d) Faulting with:

hi,j = hi,j × ||A||2 × 10−0.5

Figure 163 Fault detection during solving the circuit_2 problem for different kinds of faults with

checking the structure of the Hessenberg matrix in the inner solver of the FT-GMRES.

In figure 163 fault detection during solving the circuit_2 matrix is shown. For this matrix the

inner solver of the FT-GMRES builds an upper Hessenberg matrix like in formula 114 in the case of

this un-symmetric problem. The FT-GMRES takes 28 outer iterations (m1) without a fault whereas

25 iterations are set for the inner solver (m2). Some faults in the inner solver of the FT-GMRES

are corrected with restarting the inner solver at the current iteration j and reusing the solution

(wj). Values of Ĥ where the absolute magnitudes are greater than 10−9 are considered as non-zero

values. Fault detection is mainly applied for single faults in figure 163 for each position of hi,j . The

relative residuum (||r||2 = ||Ax− b||2/||b||2) of all trials and computations is below 10−9.

Experimental Studies on FT-GMRES Page 205 of 226

10.3.10 Fault detection during solving the mult_dcop_03 problem with checking the

structure of the Hessenberg matrix - Inner solver initialized with zero values

1 5 10 15 20 25
Iteration (Index) j→

1

5

10

15

20

25

←
Ite

ra
tio

n
(I

nd
ex

)
i

No Fa
ult

ing

Iterations w.o. Faulting:45

Number of Outer Iterations with and without Faulting
(Pseudo Hessenberg Matrix H̄(i, j))

44

45

46

47

48

49

N
um

be
r

of
O

ut
er

Ite
ra

tio
ns

(m
1)

(a) Faulting with:

hi,j = hi,j × ||A||2 × 10150

1 5 10 15 20 25
Iteration (Index) j→

1

5

10

15

20

25

←
Ite

ra
tio

n
(I

nd
ex

)
i

No Fa
ult

ing

Iterations w.o. Faulting:45

Number of Outer Iterations with and without Faulting
(Pseudo Hessenberg Matrix H̄(i, j))

45

46

47

48

49

N
um

be
r

of
O

ut
er

Ite
ra

tio
ns

(m
1)

(b) Faulting with:

hi,j = hi,j × ||A||2 × 10−300

1 5 10 15 20 25
Iteration (Index) j→

1

5

10

15

20

25

←
Ite

ra
tio

n
(I

nd
ex

)
i

No Fa
ult

ing

Iterations w.o. Faulting:45

Number of Outer Iterations with and without Faulting
(Pseudo Hessenberg Matrix H̄(i, j))

44

45

46

47

N
um

be
r

of
O

ut
er

Ite
ra

tio
ns

(m
1)

(c) Faulting with:

hi,j = hi,j × ||A||2 × 1010

1 5 10 15 20 25
Iteration (Index) j→

1

5

10

15

20

25

←
Ite

ra
tio

n
(I

nd
ex

)
i

No Fa
ult

ing

Iterations w.o. Faulting:45

Number of Outer Iterations with and without Faulting
(Pseudo Hessenberg Matrix H̄(i, j))

45

46

47

48

49

N
um

be
r

of
O

ut
er

Ite
ra

tio
ns

(m
1)

(d) Faulting with:

hi,j = hi,j × ||A||2 × 10−0.5

Figure 164 Fault detection during solving the mult_dcop_03 problem for different kinds of faults

with checking the structure of the Hessenberg matrix in the inner solver of the FT-GMRES.

In figure 164 fault detection during solving the mult_dcop_03 matrix is shown. For this matrix

the inner solver of the FT-GMRES builds an upper Hessenberg matrix like in formula 114 in the

case of this un-symmetric problem. The FT-GMRES takes 45 outer iterations (m1) without a fault

whereas 25 iterations are set for the inner solver (m2). Some faults in the inner solver of the

FT-GMRES are corrected with restarting at the current iteration j and reusing the solution (wj).

Values of Ĥ where the absolute magnitudes are greater than 10−9 are considered as non-zero

values. Fault detection is mainly applied for single faults in figure 164 for each position of hi,j . The

relative residuum (||r||2 = ||Ax− b||2/||b||2) of all trials and computations is below 10−9.

Experimental Studies on FT-GMRES Page 206 of 226

10.3.11 Fault detection during solving the chem_master1 problem with checking the

structure of the Hessenberg matrix - Inner solver initialized with zero values

1 5 10 15 20 25
Iteration (Index) j→

1

5

10

15

20

25

←
Ite

ra
tio

n
(I

nd
ex

)
i

No Fa
ult

ing

Iterations w.o. Faulting:28

Number of Outer Iterations with and without Faulting
(Pseudo Hessenberg Matrix H̄(i, j))

28

29

N
um

be
r

of
O

ut
er

Ite
ra

tio
ns

(m
1)

(a) Faulting with:

hi,j = hi,j × ||A||2 × 10150

1 5 10 15 20 25
Iteration (Index) j→

1

5

10

15

20

25

←
Ite

ra
tio

n
(I

nd
ex

)
i

No Fa
ult

ing

Iterations w.o. Faulting:28

Number of Outer Iterations with and without Faulting
(Pseudo Hessenberg Matrix H̄(i, j))

28

29

30

31

N
um

be
r

of
O

ut
er

Ite
ra

tio
ns

(m
1)

(b) Faulting with:

hi,j = hi,j × ||A||2 × 10−300

1 5 10 15 20 25
Iteration (Index) j→

1

5

10

15

20

25

←
Ite

ra
tio

n
(I

nd
ex

)
i

No Fa
ult

ing

Iterations w.o. Faulting:28

Number of Outer Iterations with and without Faulting
(Pseudo Hessenberg Matrix H̄(i, j))

28

29

N
um

be
r

of
O

ut
er

Ite
ra

tio
ns

(m
1)

(c) Faulting with:

hi,j = hi,j × ||A||2 × 1010

1 5 10 15 20 25
Iteration (Index) j→

1

5

10

15

20

25

←
Ite

ra
tio

n
(I

nd
ex

)
i

No Fa
ult

ing

Iterations w.o. Faulting:28

Number of Outer Iterations with and without Faulting
(Pseudo Hessenberg Matrix H̄(i, j))

28

29

30

N
um

be
r

of
O

ut
er

Ite
ra

tio
ns

(m
1)

(d) Faulting with:

hi,j = hi,j × ||A||2 × 10−0.5

Figure 165 Fault detection during solving the chem_master1 problem for different kinds of faults

with checking the structure of the Hessenberg matrix in the inner solver of the FT-GMRES.

In figure 165 fault detection during solving the chem_master1 matrix is shown. For this matrix

the inner solver of the FT-GMRES builds an upper Hessenberg matrix like in formula 114 in the

case of this un-symmetric problem. It takes 28 outer iterations (m1) without a fault whereas 25

iterations are set for the inner solver (m2). Nearly all faults in the inner solver of the FT-GMRES

are corrected with restarting the inner solver at the current iteration j and reusing the solution

(wj). Values of Ĥ where the absolute magnitudes are greater than 10−9 are considered as non-zero

values. Fault detection is mainly applied for single faults in figure 165 for each position of hi,j . The

relative residuum (||r||2 = ||Ax− b||2/||b||2) of all trials and computations is below 10−5.5.

Experimental Studies on FT-GMRES Page 207 of 226

10.3.12 Fault detection during solving the ILL_Stokes problem with checking the struc-

ture of the Hessenberg matrix - Inner solver initialized with zero values

1 5 10 15 20 25
Iteration (Index) j→

1

5

10

15

20

25

←
Ite

ra
tio

n
(I

nd
ex

)
i

No Fa
ult

ing

Iterations w.o. Faulting:23

Number of Outer Iterations with and without Faulting
(Pseudo Hessenberg Matrix H̄(i, j))

23

24

N
um

be
r

of
O

ut
er

Ite
ra

tio
ns

(m
1)

(a) Faulting with:

hi,j = hi,j × ||A||2 × 10150

1 5 10 15 20 25
Iteration (Index) j→

1

5

10

15

20

25

←
Ite

ra
tio

n
(I

nd
ex

)
i

No Fa
ult

ing

Iterations w.o. Faulting:23

Number of Outer Iterations with and without Faulting
(Pseudo Hessenberg Matrix H̄(i, j))

23

24

25

N
um

be
r

of
O

ut
er

Ite
ra

tio
ns

(m
1)

(b) Faulting with:

hi,j = hi,j × ||A||2 × 10−300

1 5 10 15 20 25
Iteration (Index) j→

1

5

10

15

20

25

←
Ite

ra
tio

n
(I

nd
ex

)
i

No Fa
ult

ing

Iterations w.o. Faulting:23

Number of Outer Iterations with and without Faulting
(Pseudo Hessenberg Matrix H̄(i, j))

23

24

25

N
um

be
r

of
O

ut
er

Ite
ra

tio
ns

(m
1)

(c) Faulting with:

hi,j = hi,j × ||A||2 × 1010

1 5 10 15 20 25
Iteration (Index) j→

1

5

10

15

20

25

←
Ite

ra
tio

n
(I

nd
ex

)
i

No Fa
ult

ing

Iterations w.o. Faulting:23

Number of Outer Iterations with and without Faulting
(Pseudo Hessenberg Matrix H̄(i, j))

23

24

25

26

27

28

29

30

N
um

be
r

of
O

ut
er

Ite
ra

tio
ns

(m
1)

(d) Faulting with:

hi,j = hi,j × ||A||2 × 10−0.5

Figure 166 Fault detection during solving the ILL_Stokes problem for different kinds of faults with

checking the structure of the Hessenberg matrix in the inner solver of the FT-GMRES.

In figure 166 fault detection during solving the ILL_Stokes matrix is shown. For this matrix the

inner solver of the FT-GMRES builds an upper Hessenberg matrix like in formula 114 in the case of

this un-symmetric problem. It takes 23 outer iterations (m1) without a fault whereas 25 iterations

are set for the inner solver (m2). Some faults in the inner solver of the FT-GMRES are corrected

with restarting the inner solver at the current iteration j and reusing the solution (wj). Values of

Ĥ where the absolute magnitudes are greater than 10−9 are considered as non-zero values. Fault

detection is mainly applied for single faults in figure 166 for each position of hi,j . The relative

residuum (||r||2 = ||Ax− b||2/||b||2) of all trials and computations is below 10−6.

Experimental Studies on FT-GMRES Page 208 of 226

10.4 The Extended Fault Tolerant GMRES (EFT-GMRES) method

In algorithm 15 there is shown how fault correction is done (in this master work) with checking the

structure of the Hessenberg matrix and other properties in the inner solver of the FT-GMRES, this

is mainly related for the line 3 up to 8. This algorithm shows how fault correction is done for the

FT-GMRES in section 10.2 and 10.3 if for example a deviation of the structure of the Hessenberg

matrix is detected at iteration j (m3) or another kind of fault is detected. The inner solver is

restarted with the last remaining iterations (m2 −m3) and solution (wj) if a fault is detected at a

specific iteration j (m3) in the inner solver such that the total number of iterations is at most m2.

There is also the possibility to recompute the last computation (inner solver) with all iterations for

the inner solver (m2) and last solution wj which is then a full restart for the inner solver.

Algorithm 15 The Extended Fault Tolerant GMRES (EFT-GMRES) algorithm without restarts:

Input: Matrix A, right hand side b and initial starting vector x0 and ε as the accuracy for solving

Ax = b and m1 for the number of outer iterations and m2 for the iterations of the inner solver.

Output: Approximate solution of vector xm1
for m1 > 0.

1: r0 = b−Ax0, β = ||r0||2, q1 = r0/β Compute initial residuum vector, first basis vector q1.

2: for j = 1, 2, ...until convergence and j < m1 do

3: Solve qj = Mjwj for wj Do preconditioning in unreliable mode like

[wj ,m3, restart] = GMRES(Mj , qj , w0,m2, . . .).

4: m4 = m2

5: while m4 ≥ 0 or restart! = None do

6: m4 = m4 −m3 Lower number of total iterations for the inner solver.

7: [wj ,m3, restart] = GMRES(Mj , qj , wj ,m4, . . .) Restart inner solver.

8: end while

9: vj+1 = Awj Perform matrix vector product.

10: ... Orthogonalize basis vector qj (line 11-15).

11: for i = 1, 2, ...j do

12: hi,j = qTi vj+1

13: vj+1 = vj+1 − hi,jqi
14: end for

15: hj+1,j = ||vj+1||2
16: . Do rank revealing decomposition [49].

17: if Ĥ(j+1, j) < εMachine then Stopped if machine precision is achieved

because Ĥ(j + 1, j) ≈ 0 so no further residual reduction.

18: if Ĥ(1 : j, 1 : j) no full rank then

19: Did not converged.

20: else

21: Solution is xj−1.

22: end if

23: end if

24: qj+1 = vj+1/hj+1,j New basis vector qj+1.

25: yj = argminy||Ĥ(i : j + 1, 1 : j)y − βe1||2 Solve least square problem.

26: xj = x0 + [q1, q2, . . . , qj]yj Compute solution xj .

27: end for

28: Solution found xj−1.

Experimental Studies on FT-GMRES Page 209 of 226

11 Conclusions and final results
The F-GMRES (FT-GMRES) seems to be a good approach in terms of number of floating point

operations for the inner solver. As more iterations are done in the inner solver of the F-GMRES

(FT-GMRES) the fraction between the outer (m1) and inner solver (m2) will increase which means

if the number of iterations for the inner solver is high then the density or fraction of workloads will

be also high (m
2
2

m1
). This fraction will be especially high if matrix A has a lot of non-zero elements.

The main outcome is that most of the operations are done in the inner solver and in unreliable.

In contrast the F-CG has always a constant workload ratio (m2) between the outer and inner

solver independent of the non-zero elements of matrix A. This outcome is mainly related to the

fact that the number of operations of the GMRES solver during the orthogonalization process (hi,j)

rises quadratically but in the case of the CG solver there is always constant work for each iteration.

The initialization of flexible methods as well for any iterative method is just crucial which means

in the standard case the inner solver should be initialized with zero values to achieve the best speed

up and to ensure convergence if nothing is known like the inverse norm of matrix A (||A−1||2). How

to get an initial value for vector wj is mainly based on the fact that the problem qj = Mjwj should be

solved for vector wj in the inner solver then let vector wj = M−1j qj and with using the norm (||.||2)

it follows that ||wj ||2 ≤ ||M−1j ||2||qj ||2 and by knowing that ||qj ||2 ≤ 1 it leads to ||wj ||2 ≤ ||M−1j ||2.

If the norm of matrix A is smaller than 1 such that ||A||2 ≤ 1 and let Mj ≈ A then this implies that

vector wj should be initialized with large values but in this case it makes preconditioning obsolete

of the F-GMRES solver because the GMRES solver is preferred in this case (||A||2 ≤ 1) so vector wj
should be always initialized with zero values in the F(T)-GMRES solver to get the best speed up.

Faulting can be done with different kinds of perturbations, in the case of a diagonal matrix fault-

ing with small perturbation coefficients (Eperturbed ≤ 1) is only critical on some specific positions

like for positions of h1,2, h2,3, h3,4, Also for other kinds of matrices where an upper Hessenberg

matrix will be built, faulting with large and as well small perturbations seems to be critical but in

the case of large perturbations there is a bigger chance that an overhead occurs for all positions

of hi,j . Further experiments with the 2D Poisson matrix which are not discussed in detail in this

master work also show that those positions (h1,2, h2,3, h3,4, . . .) are really sensitive for some dis-

turbances. So if the total disturbance (||A||2 × Eperturbed) is unequal to 1 at positions of h1,2, h2,3,

h3,4, . . . then there is a big chance that some overhead occurs in number of outer iterations (m2)

for the FT-GMRES. One explanation is just that small disturbances can also change the structure

of the Hessenberg matrix in the inner solver of the FT-GMRES.

In the case of un-symmetric problems where an upper Hessenberg matrix is build faulting is as

well crucial at positions of h1,2, h2,3, h3,4, . . . but other positions seems to be also critical but they

are less affected. In the case of multiple faults, faulting of a whole row of the Hessenberg matrix

in the inner solver of the FT-GMRES seems to be more critical than faulting of a single column.

If the inner solver is initialized with zero values for vector wj(w0) then an overhead of about

0 to 300 % can be observed and on average of about 15 to 20 %. It is hard to determine the

overhead in general but other experiments respective matrices in this work show that also a similar

overhead can be observed which means an analog overhead should be observed intuitively for

other matrices. The overhead for diagonal matrices doesn’t really depend on the condition number

because the overhead is nearly constant (between 10 % to 30 %) of all used diagonal matrices in

this master work. It mainly means that the overhead depends more on the convergence rate and

on the eigenvalue distribution but not entirely on the smallest and greatest eigenvalue (λ).

Sometimes ILU -preconditioning can help to decrease the overhead as in the case of solving the

2D Poisson matrix of about 36,4 % to 14.3 % in the presence of a single fault. There is also a big

Experimental Studies on FT-GMRES Page 210 of 226

drawback because the additional number of flops for preconditioning is really high of about 70 %

more against the not preconditioned case without faulting. It should be mentioned forward and

backward substitution is counted really pessimistic which means there will be perhaps more gain.

Not in every case preconditioning could help to decrease the overhead but for these problems the

overhead was nearly the same as in the not preconditioned case. It is in general not worth to apply

ILU -preconditioning to reduce the overhead for the FT-GMRES because the caused overhead is

similar as in the not preconditioned case without considering the work for factorizing of matrix A.

Observing the relative change between two residuals in the inner solver of the FT-GMRES is a

further possibility to reduce the overhead in the presence of a fault but should be only used if the

convergence behavior is already known for the used matrix A. It should be pointed out that using

the relative change for fault detection needs a lot of knowledge about the converge behavior of

each used matrix so it is hard to apply this approach in general for the FT-GMRES.

Checking the structure of the so called Hessenberg matrix looks much more promising and

can be used for more matrices to solve the problem of Ax = b. Not in every case the used FT-

GMRES solver could be protected against a fault but there was really less effort to achieve a

good result where lot of faults are detected which means a far better result should be possible,

the main problem is still what is considered as non-zero values. Fault detection for symmetric

problems is easier because there is more information about the structure of the Hessenberg matrix

where in the case of un-symmetric problems the structure is sometimes unchanged because of a

fault. Hence for really efficient implementations of the GMRES algorithm where only those values

for the tridiagonal matrix are computed and stored a recommendation is to add some additional

values (3 + 2) where in the standard case 3 values for each row of the Hessenberg matrix are used

such that it is possible to apply the Givens rotation for other positions which are usually zero or

almost zero (before applying the Givens rotation) but with the aim to recognize faults during the

orthogonalization process and to check the structure of the Hessenberg matrix.

If applied so it is not needed to apply the orthogonalization process for those other positions

except those from the tridiagonal matrix but the Givens rotation must be still applied for these ad-

ditional values and positions to detect faults during the orthogonalization process and to check

the structure of the Hessenberg matrix. Multiple faults will also change the structure of the

Hessenberg matrix and can be as well detected during the whole orthogonalization process. In

general faults like 10150 during the orthogonalization process and with the fault methodology of

h̄i,j = hi,j × ||A||2 × 10150 can be detected easier in contrast to faults with 10−300 because in the

case of un-symmetric problems a value (hi,j) in the Hessenberg matrix will not necessary set to

be zero because there is still the Givens rotation which overwrites this value maybe such that this

value is not zero. In the case of symmetric problems values (hi,j) of the Hessenberg matrix are re-

ally sensitive against any kind of perturbation such that a structural change should be recognized.

Faults likeEperturbed = 10150 will lead to more operations (GMRES tries to minimize the residuum)

whereas faults like 10−300 results in stagnating convergence because of a structural change of the

Hessenberg matrix, every fault can change the structure. Flexible preconditioning mainly helps to

decrease the number of operations to converge in an error free run. It can help to minimize the

number of operations for an error free computation but a fault in the inner solver of the FT-GMRES

will always lead to more operations to decrease the negative effect because of poor precondition-

ing. A negated fault in the inner solver with flexible preconditioning has similar the same costs

(flops) as an not corrected error with right preconditioning. Checking the rank of the Hessenberg

matrix in the inner solver of the FT-GMRES does not necessary reveal a fault but should be always

done especially for the (F-)GMRES solver. Something which is not done in this master work is to

check the numerical stability of the Hessenberg matrix like for example the condition number.

Experimental Studies on FT-GMRES Page 211 of 226

References

[1] D. Gans, “Energy-efficient and cost-effective reliability design in memory systems,” tech. rep.,

2014. Graduate Theses and Dissertations, Paper 13710.

[2] D. Gans, “ECC Brings Reliability and Power Efficiency to Mobile Devices.” Website, 2015.

EE|times, Online available under: http://www.eetimes.com/author.asp?section_id=36&

doc_id=1325816; retrieved on December 2016.

[3] Y. Saad, “A Flexible Inner-outer Preconditioned GMRES Algorithm,” SIAM J. Sci. Comput.,

vol. 14, no. 2, pp. 461 – 469, 1993.

[4] J. Elliott, M. Hoemmen, and F. Mueller, “Evaluating the Impact of SDC on the GMRES Iter-

ative Solver,” in Proceedings of the 2014 IEEE 28th International Parallel and Distributed

Processing Symposium, IPDPS ’14, (Washington, DC, USA), pp. 1193 – 1202, IEEE Computer

Society, 2014.

[5] Y. Saad and M. H. Schultz, “GMRES: A Generalized Minimal Residual Algorithm for Solving

Nonsymmetric Linear Systems,” SIAM J. Sci. Stat. Comput., vol. 7, pp. 856 – 869, July 1986.

[6] A. Quarteroni, R. Sacco, and F. Saleri, Numerical mathematics. Texts in applied mathematics,

New York, Berlin: Springer, 2000.

[7] M. A. A. Gomes-Ruggiero, V. A. L. R. Lopes, and J. V. Toledo-Benavides, “A safeguard approach

to detect stagnation of GMRES(m) with applications in Newton-Krylov methods,” Computa-

tional and Applied Mathematics, vol. 27, pp. 175 – 199, 2008.

[8] “Reliability.” Website, Last modified January 22, 2016. CCCP, Online available under: http:

//cccp.eecs.umich.edu/research/reliability.php; retrieved on December 2016.

[9] C. Slayman, “Soft error trends and mitigation techniques in memory devices,” in Reliability

and Maintainability Symposium (RAMS), 2011 Proceedings - Annual, pp. 1 – 5, Januar 2011.

[10] “Sparse Matrix Collection.” Website. University of Florida, Online available under: https:

//www.cise.ufl.edu/research/sparse/matrices/; retrieved on December 2016.

[11] E. W. Dijkstra, “Self-stabilizing Systems in Spite of Distributed Control,” Commun. ACM,

vol. 17, no. 11, pp. 643 – 644, 1974.

[12] P. G. Bridges, K. B. Ferreira, M. A. Heroux, and M. Hoemmen, “Fault-tolerant linear solvers

via selective reliability,” CoRR, vol. abs/1206.1390, 2012.

[13] K.-H. Huang and J. A. Abraham, “Algorithm-Based Fault Tolerance for Matrix Operations,”

IEEE Trans. Comput., vol. 33, pp. 518 – 528, June 1984.

[14] E. Agullo, L. Giraud, A. Guermouche, J. Roman, and M. Zounon, “Towards resilient paral-

lel linear Krylov solvers: recover-restart strategies,” Research Report RR-8324, INRIA, July

2013.

[15] Y. Notay, “Flexible Conjugate Gradients,” SIAM Journal on Scientific Computing, vol. 22, no. 4,

pp. 1444 – 1460, 2000.

[16] J. R. Shewchuk, “An Introduction to the Conjugate Gradient Method Without the Agonizing

Pain,” tech. rep., Pittsburgh, PA, USA, 1994.

Experimental Studies on FT-GMRES Page 212 of 226

http://www.eetimes.com/author.asp?section_id=36&doc_id=1325816
http://www.eetimes.com/author.asp?section_id=36&doc_id=1325816
http://cccp.eecs.umich.edu/research/reliability.php
http://cccp.eecs.umich.edu/research/reliability.php
https://www.cise.ufl.edu/research/sparse/matrices/
https://www.cise.ufl.edu/research/sparse/matrices/

[17] G. Bronevetsky and B. de Supinski, “Soft Error Vulnerability of Iterative Linear Algebra Meth-

ods,” in Proceedings of the 22Nd Annual International Conference on Supercomputing, ICS

’08, (New York, NY, USA), pp. 155 – 164, ACM, 2008.

[18] Z. Zheng, A. A. Chien, and K. Teranishi, Fault Tolerance in an Inner-Outer Solver: A GVR-

Enabled Case Study, pp. 124 – 132. Cham: Springer International Publishing, 2015.

[19] J. Elliott, M. Hoemmen, and F. Mueller, “Tolerating Silent Data Corruption in Opaque Precon-

ditioners,” CoRR, vol. abs/1404.5552, 2014.

[20] P. E. Bjørstad, M. Dryja, and E. Vainikko, “Parallel Implementation of a Schwarz Domain

Decomposition Algorithm,” in Proceedings of the Third International Workshop on Applied

Parallel Computing, Industrial Computation and Optimization, PARA ’96, (London, UK, UK),

pp. 46 – 56, Springer, 1996.

[21] J. Elliott, M. Hoemmen, and F. Mueller, “A Numerical Soft Fault Model for Iterative Linear

Solvers,” in Proceedings of the 24th International Symposium on High-Performance Parallel

and Distributed Computing, HPDC ’15, (New York, NY, USA), pp. 271 – –274, ACM, 2015.

[22] P. Du, P. Luszczek, S. Tomov, and J. Dongarra, “Soft Error Resilient QR Factorization for Hybrid

System with GPGPU,” in Proceedings of the Second Workshop on Scalable Algorithms for

Large-scale Systems, ScalA ’11, (New York, NY, USA), pp. 11 – 14, ACM, 2011.

[23] “Magma Library.” Website. University of Tennessee, Department of Electrical Engineering

and Computer Science, Magma HPC Library, Online available under: http://icl.cs.utk.

edu/magma/; retrieved on December 2016.

[24] A. Schøll, C. Braun, M. A. Kochte, and H. J. Wunderlich, “Efficient on-line fault-tolerance

for the preconditioned conjugate gradient method,” in 2015 IEEE 21st International On-Line

Testing Symposium (IOLTS), pp. 95–100, July 2015.

[25] Z. Chen, “Online-ABFT: An Online Algorithm Based Fault Tolerance Scheme for Soft Error

Detection in Iterative Methods,” SIGPLAN Not., vol. 48, no. 8, pp. 167 – 176, 2013.

[26] G. Aupy, A. Benoit, T. Hérault, Y. Robert, F. Vivien, and D. Zaidouni, “On the Combination of

Silent Error Detection and Checkpointing,” in PRDC - The 19th IEEE Pacific Rim International

Symposium on Dependable Computing - 2013, (Vancouver, Canada), IEEE, 2013.

[27] J. Elliott, M. Hoemmen, and F. Mueller, “Exploiting Data Representation for Fault Tolerance,”

in Proceedings of the 5th Workshop on Latest Advances in Scalable Algorithms for Large-Scale

Systems, ScalA ’14, (Piscataway, NJ, USA), pp. 9 – 16, IEEE Press, 2014.

[28] J. Elliott, M. Hoemmen, and F. Mueller, “Quantifying the Impact of Single Bit Flips on Floating

Point Arithmetic,” tech. rep., 2013. ORNL REPORT: ORNL/TM-2013/282.

[29] J. Langou, Z. Chen, G. Bosilca, and J. Dongarra, “Recovery Patterns for Iterative Methods in a

Parallel Unstable Environment,” SIAM Journal on Scientific Computing, vol. 30, no. 1, pp. 102

– 116, 2008.

[30] Z. Chen, “Algorithm-based Recovery for Iterative Methods Without Checkpointing,” in Pro-

ceedings of the 20th International Symposium on High Performance Distributed Computing,

HPDC ’11, (New York, NY, USA), pp. 73 – 84, ACM, 2011.

[31] J. Sloan, R. Kumar, and G. Bronevetsky, “An algorithmic approach to error localization and

partial recomputation for low-overhead fault tolerance,” in 2013 43rd Annual IEEE/IFIP In-

ternational Conference on Dependable Systems and Networks (DSN), pp. 1 – 12, June 2013.

Experimental Studies on FT-GMRES Page 213 of 226

http://icl.cs.utk.edu/magma/
http://icl.cs.utk.edu/magma/

[32] P. Sao and R. Vuduc, “Self-stabilizing Iterative Solvers,” in Proceedings of the Workshop on

Latest Advances in Scalable Algorithms for Large-Scale Systems, ScalA ’13, (New York, NY,

USA), pp. 4:1 – 4:8, ACM, 2013.

[33] R. Barrett, M. Berry, T. Chan, J. Demmel, J. Donato, J. Dongarra, V. Eijkhout, R. Pozo,

C. Romine, and H. van der Vorst, Templates for the Solution of Linear Systems: Building

Blocks for Iterative Methods. Society for Industrial and Applied Mathematics, 1994.

[34] J. Peterson and J. Burkardt, “Iterative Methods for Solving Ax = b.” Lecture Notes. Online

available under: http://people.sc.fsu.edu/~jpeterson/linear_algebra_part3.pdf; re-

trieved on December 2016.

[35] Y. Saad, Iterative Methods for Sparse Linear Systems. Philadelphia, PA, USA: Society for

Industrial and Applied Mathematics, 2nd ed., 2003.

[36] M. Botchev, “Numerical Linear Algebra.” Lecture Notes of Lecture 9, 2006. http:

//citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.329.9777&rep=rep1&type=pdf;

retrieved on December 2016.

[37] D. P. O’Leary, “Notes on Some Methods for Solving Linear Systems.” Lecture Notes, 2007. On-

line available under: https://www.cs.umd.edu/users/oleary/a600/cgnotes.pdf; retrieved

on December 2016.

[38] M. H. Gutknecht, A Brief Introduction to Krylov Space Methods for Solving Linear Systems,

pp. 53 – 62. Berlin, Heidelberg: Springer, 2007.

[39] G. Fasshauer, “Arnoldi Iteration and GMRES.” Lecture Notes. Online available under: http:

//math.iit.edu/~fass/477577_Chapter_14.pdf; retrieved on December 2016.

[40] Wikipedia, “Jacobi Method.” Online available under: https://en.wikipedia.org/wiki/

Jacobi_method; retrieved on December 2016.

[41] J. R. Senning, “Computing and Estimating the Rate of convergence.” Lecture Notes, 2015.

Online available under: http://www.math-cs.gordon.edu/courses/ma342/handouts/rate.

pdf; retrieved on December 2016.

[42] N. Gmati and B. Philippe, Comments on the GMRES Convergence for Preconditioned Systems,

pp. 40 – 51. Berlin, Heidelberg: Springer, 2008.

[43] V. Simoncini and D. B. Szyld, “Theory of Inexact Krylov Subspace Methods and Applications

to Scientific Computing,” SIAM Journal on Scientific Computing, vol. 25, no. 2, pp. 454 – 477,

2003.

[44] V. Simoncini and D. B. Szyld, “On the Occurrence of Superlinear Convergence of Exact and

Inexact Krylov Subspace Methods,” SIAM Review, vol. 47, no. 2, pp. 247 – 272, 2005.

[45] J. A. Sifuentes, M. Embree, and R. B. Morgan, “GMRES Convergence for Perturbed Coeffi-

cient Matrices, with Application to Approximate Deflation Preconditioning,” SIAM Journal on

Matrix Analysis and Applications, vol. 34, no. 3, pp. 1066–1088, 2013.

[46] G. Lube, “Arnoldi Verfahren.” Website, 2006 - 2014. Online available under: https://lp.

uni-goettingen.de/get/text/2022; retrieved on December 2016.

[47] C. Kanzow, Numerik linearer Gleichungssysteme: Direkte und iterative Verfahren. Berlin:

Springer, 2005.

[48] L. Giraud, J. Langou, and M. Rozloznik, “The loss of orthogonality in the Gram-Schmidt orthog-

onalization process,” Computers and Mathematics with Applications, vol. 50, no. 7, pp. 1069

– 1075, 2005.

Experimental Studies on FT-GMRES Page 214 of 226

http://people.sc.fsu.edu/~jpeterson/linear_algebra_part3.pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.329.9777&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.329.9777&rep=rep1&type=pdf
https://www.cs.umd.edu/users/oleary/a600/cgnotes.pdf
http://math.iit.edu/~fass/477577_Chapter_14.pdf
http://math.iit.edu/~fass/477577_Chapter_14.pdf
https://en.wikipedia.org/wiki/Jacobi_method
https://en.wikipedia.org/wiki/Jacobi_method
http://www.math-cs.gordon.edu/courses/ma342/handouts/rate.pdf
http://www.math-cs.gordon.edu/courses/ma342/handouts/rate.pdf
https://lp.uni-goettingen.de/get/text/2022
https://lp.uni-goettingen.de/get/text/2022

[49] G. W. Stewart, “Updating a Rank-Revealing ULV Decomposition,” SIAM Journal on Matrix

Analysis and Applications, vol. 14, no. 2, pp. 494 – 499, 1993.

[50] G. L. G. Sleijpen and H. A. van der Vorst, “Krylov subspace methods for large linear systems

of equations.” Lecture Notes, 1993. Online available under: http://people.sc.fsu.edu/

~jpeterson/linear_algebra_part3.pdf; retrieved on December 2016.

[51] M. Smith, “RAM reliability: Soft errors.” Website, 1998. Online available under: http://www.

ida.liu.se/labs/eslab/SNDFT/docs/ram-soft.html; retrieved on December 2016.

[52] C. Mims, “Why CPUs Aren’t Getting Any Faster.” Website, 2010. Blog, Online available under:

https://www.technologyreview.com/s/421186/why-cpus-arent-getting-any-faster/;

retrieved on December 2016.

[53] E. L. Bosworth, “The Power Wall.” Website, 2010. Columbus State University, TSYS School

of Computer Science, Online available under: http://www.edwardbosworth.com/My5155_

Slides/Chapter01/ThePowerWall.htm; retrieved on December 2016.

[54] “Hard disk drive reliability and MTBF / AFR.” Seagate, Online available under: http://

knowledge.seagate.com/articles/en_US/FAQ/174791en?language=en_US; retrieved on De-

cember 2016.

[55] M. Travers, “CPU Power Consumption Experiments and Results Analysis of Intel i7-4820K,”

tech. rep. Technical Report Series NCL-EEE-MICRO-TR-2015-197.

[56] M. Abe and V. Hudson, “Nanoelectronics for 2020 and Beyond.” Website, 2013. electron-

ics360, Online available under: http://electronics360.globalspec.com/article/183/

nanoelectronics-for-2020-and-beyond; retrieved on December 2016.

[57] E. L. Bosworth, “Overcoming the Memory Wall.” Report. Oregon State University, Online

available under: http://blogs.oregonstate.edu/ece570/files/2012/02/Report.pdf; re-

trieved on December 2016.

[58] IT-Wissen, “DRAM Memory.” Website. Online available under: http://www.itwissen.info/

definition/lexikon/dynamic-random-access-memory-DRAM-Dynamisches-RAM.html; re-

trieved on December 2016.

[59] Wikipedia, “History of supercomputingr.” Website. Online available under: http://en.

wikipedia.org/wiki/History_of_supercomputing; retrieved on December 2016.

[60] S. S. Mukherjee, J. Emer, and S. K. Reinhardt, “The Soft Error Problem: An Architectural

Perspective,” in Proceedings of the 11th International Symposium on High-Performance Com-

puter Architecture, HPCA ’05, (Washington, DC, USA), pp. 243 – 247, IEEE Computer Society,

2005.

[61] B. Schroeder, E. Pinheiro, and W.-D. Weber, “DRAM Errors in the Wild: A Large-scale Field

Study,” in Proceedings of the Eleventh International Joint Conference on Measurement and

Modeling of Computer Systems, SIGMETRICS ’09, (New York, NY, USA), pp. 193 – 204, ACM,

2009.

[62] V. Degalahal, R. Ramanarayanan, N. Vijaykrishnan, Y. Xie, and M. J. Irwin, “The Effect of

Threshold Voltages on the Soft Error Rate,” in Proceedings of the 5th International Sympo-

sium on Quality Electronic Design, ISQED ’04, (Washington, DC, USA), pp. 503 – 508, IEEE

Computer Society, 2004.

[63] Y. Kim, R. Daly, J. Kim, C. Fallin, J. H. Lee, D. Lee, C. Wilkerson, K. Lai, and O. Mutlu, “Flipping

bits in memory without accessing them: An experimental study of DRAM disturbance errors,”

Experimental Studies on FT-GMRES Page 215 of 226

 http://people.sc.fsu.edu/~jpeterson/linear_algebra_part3.pdf
 http://people.sc.fsu.edu/~jpeterson/linear_algebra_part3.pdf
http://www.ida.liu.se/labs/eslab/SNDFT/docs/ram-soft.html
http://www.ida.liu.se/labs/eslab/SNDFT/docs/ram-soft.html
https://www.technologyreview.com/s/421186/why-cpus-arent-getting-any-faster/
http://www.edwardbosworth.com/My5155_Slides/Chapter01/ThePowerWall.htm
http://www.edwardbosworth.com/My5155_Slides/Chapter01/ThePowerWall.htm
http://knowledge.seagate.com/articles/en_US/FAQ/174791en?language=en_US
http://knowledge.seagate.com/articles/en_US/FAQ/174791en?language=en_US
http://electronics360.globalspec.com/article/183/nanoelectronics-for-2020-and-beyond
http://electronics360.globalspec.com/article/183/nanoelectronics-for-2020-and-beyond
http://blogs.oregonstate.edu/ece570/files/2012/02/Report.pdf
http://www.itwissen.info/definition/lexikon/dynamic-random-access-memory-DRAM-Dynamisches-RAM.html
http://www.itwissen.info/definition/lexikon/dynamic-random-access-memory-DRAM-Dynamisches-RAM.html
http://en.wikipedia.org/wiki/History_of_supercomputing
http://en.wikipedia.org/wiki/History_of_supercomputing

in 2014 ACM/IEEE 41st International Symposium on Computer Architecture (ISCA), pp. 361

– 372, June 2014.

[64] N. DeBardeleben, S. Blanchard, V. Sridharan, S. Gurumurthi, J. Stearley, K. Ferreira, and

J. Shalf, “Extra Bits on SRAM and DRAM Errors - More Data From the Field,” Silicon Errors

in Logic - System Effects (SELSE-10), Stanford University, April 1, 2014.

[65] P. Ellerman, “Calculating Reliability using FIT & MTTF: Arrhenius HTOL Model,” tech. rep.,

2012. "Online available under: http://www.microsemi.com/document-portal/doc_view/

124041-calculating-reliability-using-fit-mttf-arrhenius-htol-model.

[66] Wikipedia, “Jaguar Supercomputer.” Website. Online available under: https://en.

wikipedia.org/wiki/Jaguar_(supercomputer); retrieved on December 2016.

[67] V. Sridharan, N. DeBardeleben, S. Blanchard, K. B. Ferreira, J. Stearley, J. Shalf, and S. Guru-

murthi, “Memory errors in modern systems: The good, the bad, and the ugly,” SIGPLAN Not.,

vol. 50, pp. 297–310, Mar. 2015.

[68] H. Anzt, V. Heuveline, and B. Rocker, “Mixed Precision Iterative Refinement Methods for

Linear Systems: Convergence Analysis Based on Krylov Subspace Methods,” in Proceedings

of the 10th International Conference on Applied Parallel and Scientific Computing - Volume 2,

PARA’10, (Berlin, Heidelberg), pp. 237 — 247, Springer, 2012.

[69] G. H. Golub and C. F. Van Loan, Matrix Computations (3rd Ed.). Baltimore, MD, USA: Johns

Hopkins University Press, 1996.

[70] P. G. Bridges, K. B. Ferreira, M. A. Heroux, and M. Hoemmen, “Fault-tolerant linear solvers

via selective reliability,” tech. rep., 2012. arXiv:1206.1390v1.

[71] J. van den Eshof and G. L. G. Sleijpen, “Inexact Krylov Subspace Methods for Linear Systems,”

SIAM Journal on Matrix Analysis and Applications, vol. 26, no. 1, pp. 125 – 153, 2004.

[72] C. Vuik, “New Insights in GMRES-like Methods with Variable Preconditioners,” J. Comput.

Appl. Math., vol. 61, pp. 189 – 204, July 1995.

[73] V. Simoncini and D. B. Szyld, “On the Occurrence of Superlinear Convergence of Exact and

Inexact Krylov Subspace Methods,” SIAM Review, vol. 47, no. 2, pp. 247–272, 2005.

[74] O. Axelsson, Iterative Solution Methods. New York, NY, USA: Cambridge University Press,

1994.

[75] J. E. Flaherty, “Block Tridiagonal Systems.” Website, 2005. Online available under: http:

//www.cs.rpi.edu/~flaherje/pdf/lin10.pdf; retrieved on Januar 2016.

[76] Wikipedia, “Symmetric matrix.” Online available under: https://en.wikipedia.org/wiki/

Symmetric_matrix; retrieved on December 2016.

[77] Netlib, “GMRES Code.” Listening. Details of this algorithm are described in: Templates for

the Solution of Linear Systems: Building Blocks for Iterative Methods, Online available under:

http://www.netlib.org/templates/matlab/gmres.m; retrieved on December 2016.

12 Parameters
Figure 17, 18, diagonal matrix, first value = 1, last value controlled, size = 1000×1000, ||r||2 ≤ 10−9

Figure 19, 20, diagonal matrix, first value = 1, last value controlled, size = 1000×1000, ||r||2 ≤ 10−9

Figure 21, 22, diagonal matrix, first value = 1, last value controlled, size = 1000×1000, ||r||2 ≤ 10−9

Figure 23, 24, diagonal matrix, first value = 1, last value controlled, size = 1000×1000, ||r||2 ≤ 10−9

Figure 25, diagonal matrix, first value = 1, last value controlled, size = 1000× 1000, ||r||2 ≤ 10−9

Experimental Studies on FT-GMRES Page 216 of 226

http://www.microsemi.com/document-portal/doc_view/124041-calculating-reliability-using-fit-mttf-arrhenius-htol-model
http://www.microsemi.com/document-portal/doc_view/124041-calculating-reliability-using-fit-mttf-arrhenius-htol-model
https://en.wikipedia.org/wiki/Jaguar_(supercomputer)
https://en.wikipedia.org/wiki/Jaguar_(supercomputer)
http://www.cs.rpi.edu/~flaherje/pdf/lin10.pdf
http://www.cs.rpi.edu/~flaherje/pdf/lin10.pdf
https://en.wikipedia.org/wiki/Symmetric_matrix
https://en.wikipedia.org/wiki/Symmetric_matrix
http://www.netlib.org/templates/matlab/gmres.m

Figure 26, diagonal matrix, randomized values, size = 1000× 1000, ||r||2 ≤ 10−9

Figure 29, 30, diagonal matrix, first value = 1, last value = 142.5, size = 1000× 1000, ||r||2 ≤ 10−9

Figure 31, 32, diagonal matrix, first value = 1, last value = 142.5, size = 1000× 1000, ||r||2 ≤ 10−9

Figure 34, diagonal matrix, first value = 1, last value = 142.5, size = 1000× 1000, ||r||2 ≤ 10−9

Figure 35, 36, diagonal matrix, first value = 1, last value = 1425, size = 1000× 1000, ||r||2 ≤ 10−9

Figure 37, 38, diagonal matrix, first value = 1, last value = 14250, size = 1000× 1000, ||r||2 ≤ 10−9

Figure 41, 42, diagonal matrix, first value = 1, last value = 142.5, size = 1000× 1000, ||r||2 ≤ 10−9

Figure 43, 44, diagonal matrix, first value = 1, last value = 1425, size = 1000× 1000, ||r||2 ≤ 10−9

Figure 46, 2D Poisson matrix, size = 10000× 10000, ||r||2 ≤ 10−9

Figure 47, adder_dcop_63 matrix, size = 1813× 1813, ||r||2 ≤ 10−9

Figure 48, 49, 2D Poisson matrix, size = 10000× 10000, ||r||2 ≤ 10−9

Figure 50, 51, adder_dcop_63 matrix, size = 1813× 1813, ||r||2 ≤ 10−9

Figure 52, 53, 2D Poisson matrix, size = 10000× 10000, ||r||2 ≤ 10−9

Figure 54, 55, adder_dcop_63 matrix, size = 1813× 1813, ||r||2 ≤ 10−9

Figure 56, 57, 2D Poisson matrix, size = 10000× 10000, ||r||2 ≤ 10−9

Figure 58, 59, adder_dcop_63 matrix, size = 1813× 1813, ||r||2 ≤ 10−9

Figure 62, 63, 64, 65, 66, 67, 68, 2D Poisson matrix, size = 10000× 10000, ||r||2 ≤ 10−9

Figure 69, 70, 71, 72, adder_dcop_63 matrix, size = 1813× 1813, ||r||2 ≤ 10−9

Figure 74, 76, 2D Poisson matrix, size = 10000× 10000, ||r||2 ≤ 10−9

Figure 75, 77, adder_dcop_63 matrix, size = 1813× 1813, ||r||2 ≤ 10−9

Figure 78, 2D Poisson matrix, size = 10000× 10000, ||r||2 ≤ 10−9

Figure 79, adder_dcop_63 matrix, ||r||2 ≤ 10−9

Figure 80, 2D Poisson matrix, size = 10000× 10000, ||r||2 ≤ 10−9

Figure 81, adder_dcop_63 matrix, ||r||2 ≤ 10−9

Figure 82, 83, 84, 85, 86, 2D Poisson matrix, size = 10000× 10000, ||r||2 ≤ 10−9

Figure 87, 88, 89, 90, 91, adder_dcop_63 matrix, ||r||2 ≤ 10−9

Figure 92, 2D Poisson matrix & adder_dcop_63 matrix, ||r||2 ≤ 10−9

Figure 93, 2D Poisson matrix, size = 10000× 10000, ||r||2 ≤ 10−9

Figure 94, Pres_Poisson, size = 14822× 14822, ||r||2 ≤ 10−6

Figure 95, Kuu matrix, size = 7102× 7102, ||r||2 ≤ 10−9

Figure 96, Na5 matrix, size = 5832× 5832, ||r||2 ≤ 10−9

Figure 97, adder_dcop_63 matrix, size = 1813× 1813, ||r||2 ≤ 10−9

Figure 98, circuit_2 matrix, size = 4510× 4510, ||r||2 ≤ 10−9

Figure 99, mult_dcop_03, size = 25187× 25187, ||r||2 ≤ 10−9

Figure 100, chem_master1 matrix, size = 40401× 40401, ||r||2 ≤ 10−5.5

Figure 101, Ill_Stokes matrix, size = 20896× 20896, ||r||2 ≤ 10−6

Figure 102, Pres_Poisson, size = 14822× 14822, ||r||2 ≤ 10−6

Figure 103, Kuu matrix, size = 7102× 7102, ||r||2 ≤ 10−9

Figure 104, Na5 matrix, size = 5832× 5832, ||r||2 ≤ 10−9

Figure 105, circuit_2 matrix, size = 4510× 4510, ||r||2 ≤ 10−9

Figure 106, chem_master1 matrix, size = 40401× 40401, ||r||2 ≤ 10−5.5

Figure 107, Pres_Poisson, size = 14822× 14822, ||r||2 ≤ 10−6

Figure 108, Kuu matrix, size = 7102× 7102, ||r||2 ≤ 10−9

Figure 109, Na5 matrix, size = 5832× 5832, ||r||2 ≤ 10−9

Figure 110, circuit_2 matrix, size = 4510× 4510, ||r||2 ≤ 10−9

Figure 111, mult_dcop_03, size = 25187× 25187, ||r||2 ≤ 10−9

Figure 112, chem_master1 matrix, size = 40401× 40401, ||r||2 ≤ 10−5.5

Experimental Studies on FT-GMRES Page 217 of 226

Figure 113, Ill_Stokes matrix, size = 20896× 20896, ||r||2 ≤ 10−6

Figure 114, 115, circuit_2 matrix, size = 4510× 4510, ||r||2 ≤ 10−9

Figure 116, 117, mult_dcop_03 matrix, size = 25187× 25187, ||r||2 ≤ 10−9

Figure 118, 119, Ill_Stokes matrix, size = 20896× 20896, ||r||2 ≤ 10−6

Figure 122, 2D Poisson matrix, size = 10000× 10000, ||r||2 ≤ 10−9

Figure 123, Pres_Poisson, size = 14822× 14822, ||r||2 ≤ 10−6

Figure 124, Kuu matrix, size = 7102× 7102, ||r||2 ≤ 10−9

Figure 125, 126, adder_dcop_63 matrix, size = 1813× 1813, ||r||2 ≤ 10−9

Figure 127, circuit_2 matrix, size = 4510× 4510, ||r||2 ≤ 10−9

Figure 128, mult_dcop_03, size = 25187× 25187, ||r||2 ≤ 10−9

Figure 129, chem_master1 matrix, size = 40401× 40401, ||r||2 ≤ 10−5.5

Figure 130, 131, 2D Poisson matrix, size = 10000× 10000, ||r||2 ≤ 10−9

Figure 132, 133, 134, 135, 136, 137, diagonal matrix, first value = 1, last value = 1425, ||r||2 ≤ 10−9

Figure 139, 140, 141, 142, 143, 144, 2D Poisson matrix, size = 10000× 10000, ||r||2 ≤ 10−9

Figure 145, 146, 147, 148, 149, 150, adder_dcop_63 matrix, size = 1813× 1813, ||r||2 ≤ 10−9

Figure 151, 152, 153, 2D Poisson matrix, size = 10000× 10000, ||r||2 ≤ 10−9

Figure 158, 2D Poisson matrix, size = 10000× 10000, ||r||2 ≤ 10−9

Figure 159, Pres_Poisson, size = 14822× 14822, ||r||2 ≤ 10−6

Figure 160, Kuu matrix, size = 7102× 7102, ||r||2 ≤ 10−9

Figure 161, Na5 matrix, size = 5832× 5832, ||r||2 ≤ 10−9

Figure 162, adder_dcop_63 matrix, size = 1813× 1813, ||r||2 ≤ 10−9

Figure 163, circuit_2 matrix, size = 4510× 4510, ||r||2 ≤ 10−9

Figure 164, mult_dcop_03, size = 25187× 25187, ||r||2 ≤ 10−9

Figure 165, chem_master1 matrix, size = 40401× 40401, ||r||2 ≤ 10−5.5

Figure 166, Ill_Stokes matrix, size = 20896× 20896, ||r||2 ≤ 10−6

Figure 167, 168, 169, 170, 171, 2D Poisson matrix, size = 10000× 10000,||r||2 ≤ 10−9

Figure 172, 173, 174, 175, 176, 2D Poisson matrix, size = 10000× 10000, ||r||2 ≤ 10−9

||r||2 . . . maximum allowable relative residuum for the solution vector x (||r||2 = ||Ax− b||2/||b||2)

For all trials and tests the right hand side b is always computed with b = Axsolution and xsolution =

ones() (a vector with ones), the outer solver is always initialized with xstart = zeros() (zero values).

All experiments in this master work are done with Matlab and Python, Python is used to visualize.

13 Appendix
13.1 Formulas for computing the number of flops (Matlab)

1 %faktor . . . (input) how much multiplikations and addtions for each non−zero element of matrix A,

2 %nnz . . . (input) number of non−zeros of matrix A,

3 %n . . . (input) length of solution vector x ,

4 %m. . . (input) number of iterations ,

5 %m1. . . (input) number of outer iterations of F(T)−GMRES, %m2. . . (input) number of inner iterations of F(T)−GMRES,

6 %flops . . . (output) number of floating point operations at iteration m (m1)

7

8 % Flops of the standard GMRES solver

9 function [flops] = gmres_flops (m,n,nnz, faktor)

10 flops=faktor*m*nnz+2*m^(2)*n+3*m̂ (2)+m̂ (2)+2*m*n;

11 end

12

13 % Flops of the f lexible GMRES (F(T)−GMRES) solver for a fixed number of inner iterations (m2)

14 function [flops] = gmres_flexible_flops (m1,m2,n,nnz, faktor)

15 flops= gmres_flops (m1,n,nnz, faktor)+(m1)*gmres_flops (m2,n,nnz, faktor)+faktor*nnz*(m1+1)+(m1+1)*n;

16 end

17

Experimental Studies on FT-GMRES Page 218 of 226

18 % Flops of the preconditioned GMRES solver for a fixed number of iterations (m)

19 % faktor2 are the number of operations which have to be done for forward and backward substitution

20 function [flops] = gmres_precon_flops (nnz,m,n,num, faktor , faktor2)

21 flops=gmres_flops (nnz,m,n, faktor)+m*faktor2 ;

22 end

23

24 % Flops of the preconditioned flexible GMRES (F(T)−GMRES) solver for a fixed number of inner iterations (m2)

25 function [flops] = gmres_flexible_precon_flops (m1,m2,n,nnz, faktor , faktor2)

26 flops= gmres_flops (m1,n,nnz, faktor)+(m1)*gmres_precon_flops (m2,n,nnz, faktor , faktor2)+faktor*nnz*(m1+1)+(m1+1)*n;

27 end

28

29 % Flops of the f lexible GMRES (F(T)−GMRES) solver for different iterations of the inner solver

30 % m is just an array which stores the number of inner iterations (m2) for each execution of i t

31 function [flops] = gmres_flexible_flops (k ,nnz,m,n, faktor)

32 flops=[]

33

34 %Flops of f lexible GMRES (F(T)−GMGRES) for a fixed number of iterations for the inner solver

35 i f length(m)==1

36 flops= gmres_flops (nnz, k ,n, faktor)+k*gmres_flops (nnz,m,n, faktor)+faktor*nnz*(k+1)+(k+1)*n;

37 end

38

39 %Flops of f lexible GMRES (FT−GMGRES) with variable numbers of iterations for the inner solver

40 i f length(m)>1

41 flops_= gmres_flops (nnz, k ,n, faktor) ;

42 flops__=0;

43 for i=1:k

44 flops__=flops__+gmres_flops (nnz,m(i) ,n, faktor) ;

45 end

46 flops=flops_+flops__+(k+1)*n+faktor*nnz*(k+1);

47 end

48 end

49

50 % Flops of the standard conjugate gradient (CG) solver

51 function [flops] = conjugate_flops (m,n,nnz, faktor)

52 flops=faktor*m*nnz+m*(10*n)+n;

53 end

54

55 % Flops of the f lexible conjugate gradient (F−CG) solver for a fixed number of inner iterations (m2)

56 function [flops] = conjugate_flexible_flops (m1,m2,n,nnz, faktor)

57 flops=conjugate_flops (m1,n,nnz, faktor)+ (m1)* conjugate_flops (m2,n,nnz, faktor)+faktor *(m1+1)*nnz+(m1+1)*n;

58 end

13.2 Preconditioned GMRES algorithm [77]
1 function [x , error , iter , flag] = gmres(A, x , b, M, restrt , max_it , tol)

2 % −− Iterative template routine −−
3 % Univ . of Tennessee and Oak Ridge National Laboratory

4 % October 1, 1993

5 % Details of this algorithm are described in "Templates for the

6 % Solution of Linear Systems: Building Blocks for Iterative

7 % Methods" , Barrett , Berry , Chan, Demmel, Donato, Dongarra ,

8 % Eijkhout , Pozo , Romine, and van der Vorst , SIAM Publications ,

9 % 1993. (ftp netlib2 . cs . utk .edu; cd linalg ; get templates .ps) .

10 % [x , error , iter , flag] = gmres(A, x , b, M, restrt , max_it , tol)

11 % gmres.m solves the linear system Ax=b using the Generalized Minimal residual method with restarts .

12 % input A REAL nonsymmetric positive definite matrix

13 % x REAL i n i t i a l guess vector

14 % b REAL right hand side vector

15 % M REAL preconditioner matrix

16 % restrt INTEGER number of iterations between restarts

17 % max_it INTEGER maximum number of iterations

Experimental Studies on FT-GMRES Page 219 of 226

18 % tol REAL error tolerance

19 % output x REAL solution vector

20 % error REAL error norm

21 % iter INTEGER number of iterations performed

22 % flag INTEGER: 0 = solution found to tolerance , 1 = no convergence given max_it

23 iter = 0; % ini t ia l i zat ion

24 flag = 0;

25 bnrm2 = norm(b) ;

26 i f (bnrm2 == 0.0) , bnrm2 = 1.0; end

27 r = M \ (b−A*x) ; error = norm(r) / bnrm2;

28 i f (error < tol) return , end

29 [n,n] = size (A) ; % in i t i a l i ze workspace

30 m = restrt ;

31 V(1:n,1:m+1) = zeros(n,m+1);

32 H(1:m+1,1:m) = zeros(m+1,m) ;

33 cs (1:m) = zeros(m,1) ;

34 sn(1:m) = zeros(m,1) ;

35 e1 = zeros(n,1) ;

36 e1(1) = 1.0;

37 for i ter = 1:max_it , % begin iteration

38 r = M \ (b−A*x) ;

39 V(: ,1) = r / norm(r) ;

40 s = norm(r)*e1;

41 for i = 1:m, % construct orthonormal

42 w = M \ (A*V(: , i)) ; % basis using Gram−Schmidt

43 for k = 1: i ,

44 H(k , i)= w’*V(: , k) ;

45 w = w− H(k, i)*V(: , k) ;

46 end

47 H(i+1, i) = norm(w) ;

48 V(: , i+1) = w / H(i+1, i) ;

49 for k = 1: i−1, % apply Givens rotation

50 temp = cs (k)*H(k , i) + sn(k)*H(k+1, i) ;

51 H(k+1, i) =−sn(k)*H(k , i) + cs (k)*H(k+1, i) ;

52 H(k , i) = temp;

53 end

54 [cs (i) , sn(i)] = rotmat(H(i , i) , H(i+1, i)) ; % form i−th rotation matrix

55 temp = cs (i)* s (i) ; % approximate residual norm

56 s (i+1) =−sn(i)* s (i) ;

57 s (i) = temp;

58 H(i , i) = cs (i)*H(i , i) + sn(i)*H(i+1, i) ;

59 H(i+1, i) = 0.0;

60 error = abs(s (i +1)) / bnrm2;

61 i f (error <= tol) , % update approximation

62 y = H(1: i ,1 : i) \ s (1: i) ; % and exit

63 x = x + V(: ,1 : i)*y ;

64 break;

65 end

66 end

67 i f (error <= tol) , break, end

68 y = H(1:m,1:m) \ s (1:m) ;

69 x = x + V(: ,1 :m)*y ; % update approximation

70 r = M \ (b−A*x) % compute residual

71 s (i+1) = norm(r) ;

72 error = s(i+1) / bnrm2; % check convergence

73 i f (error <= tol) , break, end;

74 end

75 i f (error > tol) flag = 1; end; % converged

76 % END of gmres.m

Experimental Studies on FT-GMRES Page 220 of 226

13.3 Faulting with FT-GMRES while solving the 2D Poisson matrix

13.3.1 Inner solver initialized with the previous computed basis vector (wj(w0) = wj−1)

0 50 100 150 200 250
Aggregate Inner Solve Iteration (j) That Faults (m2)

10

12

14

16

18

20

Nu
m

be
ro

fO
ut

er
Ite

ra
tio

ns
(m

1) Computations with Faulting of : hi,j = hi,j x ||A||2 x 10150

Outer Iterations without Faulting
Outer Solver - Check for Convergence

Figure 167 Faulting with error type 1 on the first MGS-iteration (hi=1,j) during solving the

2D Poisson matrix for i = 1 and j = 1, . . . , 25.

0 50 100 150 200 250
Aggregate Inner Solve Iteration (j) That Faults (m2)

10

11

12

13

14

15

16

Nu
m

be
ro

fO
ut

er
Ite

ra
tio

ns
(m

1) Computations with Faulting of : hi,j = hi,j x ||A||2 x 10−300

Outer Iterations without Faulting
Outer Solver - Check for Convergence

Figure 168 Faulting with error type 2 on the first MGS-iteration (hi=1,j) during solving the

2D Poisson matrix for i = 1 and j = 1, . . . , 25.

Experimental Studies on FT-GMRES Page 221 of 226

13.3.2 Inner solver initialized with random values (wj(w0) = randn())

0 100 200 300 400 500 600 700
Aggregate Inner Solve Iteration (j) That Faults (m2)

30

32

34

36

38

40

Nu
m

be
ro

fO
ut

er
Ite

ra
tio

ns
(m

1) Computations with Faulting of : hi,j = hi,j x ||A||2 x 102

Outer Iterations without Faulting
Outer Solver - Check for Convergence

Figure 169 Faulting with error type 1 on the first MGS-iteration (hi=1,j) during solving the

2D Poisson matrix for i = 1 and j = 1, . . . , 25.

0 100 200 300 400 500 600 700
Aggregate Inner Solve Iteration (j) That Faults (m2)

30

32

34

36

38

40

Nu
m

be
ro

fO
ut

er
Ite

ra
tio

ns
(m

1) Computations with Faulting of : hi,j = hi,j x ||A||2 x 102

Outer Iterations without Faulting
Outer Solver - Check for Convergence

Figure 170 Faulting with error type 2 on the first MGS-iteration (hi=1,j) during solving the

2D Poisson matrix for i = 1 and j = 1, . . . , 25.

Experimental Studies on FT-GMRES Page 222 of 226

13.3.3 Residuum curves for solving the 2D Poisson matrix

0 5 10 15 20 25 30 35
Number of Outer Iteration (m1)

10−10
10−8
10−6
10−4
10−2

100
102
104
106
108

1010

R
el

at
iv

e
R

es
id

uu
m
||A

x
−
b||

2

||b
|| 2

Maximum allowable Residuum

Reference without Faulting and with Outer Iterations 31
Faulting at 1st Iteration j on i = 1 (h1,1) and with Outer Iterations 31

Faulting at 2nd Iteration j on i = 1 (h1,2) and with Outer Iterations 32

Faulting at 3rd Iteration j on i = 1 (h1,3) and with Outer Iterations 31

Faulting at 4rd Iteration j on i = 1 (h1,4) and with Outer Iterations 32

Faulting at 5th Iteration j on i = 1 (h1,5) and with Outer Iterations 32

Faulting at 13th Iteration j on i = 1 (h1,13) and with Outer Iterations 31

Faulting at 25th Iteration j on i = 1 (h1,25) and with Outer Iterations 31

Figure 171 Trend of the explicit residuum and faulting with error type 1 during solving the 2D

Poisson matrix. Faulting at 5th outer iteration. Inner solver initialized with random values.

0 5 10 15 20 25 30 35
Number of Outer Iteration (m1)

10−10
10−8
10−6
10−4
10−2

100
102
104
106
108

1010

R
el

at
iv

e
R

es
id

uu
m
||A

x
−
b||

2

||b
|| 2

Maximum allowable Residuum

Reference without Faulting and with Outer Iterations 32
Faulting at 1st Iteration j on i = 1 (h1,1) and with Outer Iterations 32

Faulting at 2nd Iteration j on i = 1 (h1,2) and with Outer Iterations 33

Faulting at 3rd Iteration j on i = 1 (h1,3) and with Outer Iterations 32

Faulting at 4rd Iteration j on i = 1 (h1,4) and with Outer Iterations 33

Faulting at 5th Iteration j on i = 1 (h1,5) and with Outer Iterations 32

Faulting at 13th Iteration j on i = 1 (h1,13) and with Outer Iterations 31

Faulting at 25th Iteration j on i = 1 (h1,25) and with Outer Iterations 31

Figure 172 Trend of the explicit residuum and faulting with error type 2 during solving the 2D

Poisson matrix. Faulting at 5th outer iteration. Inner solver initialized with random values.

Experimental Studies on FT-GMRES Page 223 of 226

0 5 10 15 20 25 30 35
Number of Outer Iteration (m1)

10−10
10−8
10−6
10−4
10−2

100
102
104
106
108

1010

R
el

at
iv

e
R

es
id

uu
m
||A

x
−
b||

2

||b
|| 2

Maximum allowable Residuum

Reference without Faulting and with Outer Iterations 31
Faulting at 1st Iteration j on i = 1 (h1,1) and with Outer Iterations 31

Faulting at 2nd Iteration j on i = 1 (h1,2) and with Outer Iterations 32

Faulting at 3rd Iteration j on i = 1 (h1,3) and with Outer Iterations 31

Faulting at 4rd Iteration j on i = 1 (h1,4) and with Outer Iterations 31

Faulting at 5th Iteration j on i = 1 (h1,5) and with Outer Iterations 32

Faulting at 13th Iteration j on i = 1 (h1,13) and with Outer Iterations 32

Faulting at 25th Iteration j on i = 1 (h1,25) and with Outer Iterations 32

Figure 173 Trend of the explicit residuum and faulting with error type 1 during solving the 2D

Poisson matrix. Faulting at 15th outer iteration. Inner solver initialized with random values.

0 5 10 15 20 25 30 35
Number of Outer Iteration (m1)

10−10
10−8
10−6
10−4
10−2

100
102
104
106
108

1010

R
el

at
iv

e
R

es
id

uu
m
||A

x
−
b||

2

||b
|| 2

Maximum allowable Residuum

Reference without Faulting and with Outer Iterations 31
Faulting at 1st Iteration j on i = 1 (h1,1) and with Outer Iterations 32

Faulting at 2nd Iteration j on i = 1 (h1,2) and with Outer Iterations 33

Faulting at 3rd Iteration j on i = 1 (h1,3) and with Outer Iterations 31

Faulting at 4rd Iteration j on i = 1 (h1,4) and with Outer Iterations 31

Faulting at 5th Iteration j on i = 1 (h1,5) and with Outer Iterations 31

Faulting at 13th Iteration j on i = 1 (h1,13) and with Outer Iterations 31

Faulting at 25th Iteration j on i = 1 (h1,25) and with Outer Iterations 32

Figure 174 Trend of the explicit residuum and faulting with error type 2 during solving the 2D

Poisson matrix. Faulting at 15th outer iteration. Inner solver initialized with random values.

Experimental Studies on FT-GMRES Page 224 of 226

0 5 10 15 20 25 30 35
Number of Outer Iteration (m1)

10−10
10−8
10−6
10−4
10−2

100
102
104
106
108

1010

R
el

at
iv

e
R

es
id

uu
m
||A

x
−
b||

2

||b
|| 2

Maximum allowable Residuum

Reference without Faulting and with Outer Iterations 32
Faulting at 1st Iteration j on i = 1 (h1,1) and with Outer Iterations 32

Faulting at 2nd Iteration j on i = 1 (h1,2) and with Outer Iterations 32

Faulting at 3rd Iteration j on i = 1 (h1,3) and with Outer Iterations 31

Faulting at 4rd Iteration j on i = 1 (h1,4) and with Outer Iterations 31

Faulting at 5th Iteration j on i = 1 (h1,5) and with Outer Iterations 30

Faulting at 13th Iteration j on i = 1 (h1,13) and with Outer Iterations 32

Faulting at 25th Iteration j on i = 1 (h1,25) and with Outer Iterations 32

Figure 175 Trend of the explicit residuum and faulting with error type 1 during solving the 2D

Poisson matrix. Faulting at 30th outer iteration. Inner solver initialized with random values.

0 5 10 15 20 25 30 35
Number of Outer Iteration (m1)

10−10
10−8
10−6
10−4
10−2

100
102
104
106
108

1010

R
el

at
iv

e
R

es
id

uu
m
||A

x
−
b||

2

||b
|| 2

Maximum allowable Residuum

Reference without Faulting and with Outer Iterations 31
Faulting at 1st Iteration j on i = 1 (h1,1) and with Outer Iterations 32

Faulting at 2nd Iteration j on i = 1 (h1,2) and with Outer Iterations 34

Faulting at 3rd Iteration j on i = 1 (h1,3) and with Outer Iterations 32

Faulting at 4rd Iteration j on i = 1 (h1,4) and with Outer Iterations 32

Faulting at 5th Iteration j on i = 1 (h1,5) and with Outer Iterations 31

Faulting at 13th Iteration j on i = 1 (h1,13) and with Outer Iterations 32

Faulting at 25th Iteration j on i = 1 (h1,25) and with Outer Iterations 32

Figure 176 Trend of the explicit residuum and faulting with error type 2 during solving the 2D

Poisson matrix. Faulting at 30th outer iteration. Inner solver initialized with random values.

Experimental Studies on FT-GMRES Page 225 of 226

13.4 Abstract (German - short version)

Iterative Gleichungslöser geben die Möglichkeit grosse Gleichungssysteme effizient zu lösen.

Es wird ein Vektor x gesucht um das Problem Ax = b zu berechnen für eine Matrix A wobei diese

wiederum dünn besetzt ist. Für spärlich belegte Matrizen gilt dass diese zwar sehr gross sind,

aber nur sehr wenige Elemente haben die ungleich Null sind. Während des Lösungsvorganges

in Computersystemen kann es zu sogenannten Bitflips im Hauptspeicher kommen, welche das

Ergebnis des gewählten Gleichungslöser verfälschen und daher die berechnete Lösung x nicht

korrekt sein kann. Diese Fehler im Hauptspeicher werden durch verschiedene Methoden erkannt.

Wie zum Beispiel durch den sogenannten ECC (Error Correcting Code) - Speicher welcher Bitflips

erkennen und korrigieren kann.

Diese Methoden führen aber wiederum zu einem erhöhten Energieverbrauch des gesamten

Computersystems. Es gibt daher verschiedene Ansätze um diesen Trend entgegen zu wirken. Eine

Möglichkeit ist es zwei Gleichungslöser zu kombinieren, wobei dieser aus einen äusseren und

inneren Löser besteht. Im Inneren dürfen wiederum Bitflips passieren, wobei der Äussere das

Ergebnis überprüft ob das Gleichungssystem Ax = b gelöst und der richtige Vektor x berechnet

wurde.

Im Fall des FT-GMRES (Fault Tolerant GMRES) gibt es einen inneren und äusseren Gleichungs-

löser. Dieser besteht aus zwei GMRES Lösern welcher wiederum das Problem Ax = b für ver-

schiedene Arten von Matrizen berechnen kann. Diese Arbeit beschreibt vor allem wie sich diese

Fehler im inneren Gleichungslöser mit verschiedenen Arten von Bitflips auf den Äusseren auswirken.

Ein weiteres Ziel dieser Arbeit ist wie Fehler auch erkannt werden können um den Nebenwirkun-

gen von Bitflips entgegen zu wirken. Der FT-GMRES soll möglichst wenig durch Bitflips im inneren

Löser beeinflusst werden.

Experimental Studies on FT-GMRES Page 226 of 226

	Abstract
	Summary
	Motivation of this work and problem setting
	The problem which is considered in this master work
	The importance of this problem
	The current state of the FT-GMRES approach
	The scientific gap
	The main focus of this master work
	The results of this master work

	Synopsis
	Related Work
	Topics related to fault tolerant iterative linear solvers (overview)
	Selective Reliability
	Flexible Conjugate Gradient (F-CG)
	Flexible GMRES (F-GMRES)

	ABFT (Algorithm Based Fault Tolerance)
	ABFT for the GMRES solver
	ABFT for the Conjugate Gradient (CG) solver
	Fault tolerance through equilibrated matrices

	Partial recomputing
	Self-stabilization
	Questions

	Background
	Iterative methods
	Krylov subspace methods
	Introduction
	The Jacobi method
	From Jacobi method to Krylov subspace methods
	From recursion of the residuum to Krylov subspace methods
	Definition of the Krylov subspace
	Definition of Krylov subspace methods
	Preconditioning of Krylov subspace solvers
	Inexact Krylov methods
	The Conjugate Gradient (CG) and Steepest Descent (SD) method
	The GMRES method

	The condition number of a matrix A
	Problem description of exa scale computing
	The statistical and sandbox reliability model
	Classification of faults and failures
	Bitflips in practice

	Flexible and Fault Tolerant GMRES (F and FT-solvers)
	Flexible solvers (F-solvers)
	Newton's fixed point method
	The Flexible Conjugate Gradient (F-CG) method
	The Flexible Generalized Minimal Residual (F-GMRES) method
	Determining the number of operations for (F-)GMRES and (F-)CG
	Workloads of the outer and inner solver of F-CG for various matrix densities
	Workload distribution of F-CG for various densities of non-zero elements
	Workloads of the outer and inner solver of F-GMRES for various matrix densities
	Workload distribution of F-GMRES for various densities of non-zero elements
	Workload distribution of F-GMRES for various densities of non-zero elements
	Workload distribution of F-GMRES for various densities of non-zero elements and for a fixed outer iteration
	Workload distribution between F-GMRES and GMRES

	Fault Tolerant Iterative Linear solvers (FT-solvers)
	Fault tolerance and selective reliability
	Relation between iterative refinement and sand boxing
	Some assumptions on the unreliable model
	The Fault Tolerant GMRES (FT-GMRES) method

	Dealing with rank deficiency in F-GMRES/FT-GMRES
	Additional failure modes for the F-GMRES
	Recover strategies for the FT-GMRES

	Relaxation strategies for nested Krylov methods (F(T)-GMRES)
	Relaxation strategies for inexact Krylov subspace methods
	Nested inexact Krylov methods
	Some notes on the preconditioned GMRES solver

	Experiments related to GMRES and Flexible GMRES (F-GMRES)
	Relation between condition number and number of outer iterations of GMRES and Flexible GMRES (F-GMRES)
	Problem 1, relation between condition number and preconditioning by the inner solver of the F-GMRES with random values as initial vector
	Problem 2, relation between condition number and preconditioning by the inner solver of the F-GMRES with random values as initial vector
	Problem 1, relation between condition number and preconditioning by the inner solver of the F-GMRES with zero values as initial vector
	Problem 2, relation between condition number and preconditioning by the inner solver of the F-GMRES with zero values as initial vector

	Different test cases for GMRES and Flexible GMRES (F-GMRES)
	GMRES and F-GMRES on different diagonal matrices - Inner solver initialized with zero values
	GMRES and F-GMRES on different diagonal matrices with random values - Inner solver initialized with zero values

	Injecting errors in Fault Tolerant GMRES (FT-GMRES)
	Introduction
	Error Injection Methology

	Experiments related to Fault Tolerant GMRES (FT-GMRES)
	Faulting on the first and last Modified Gram Schmidt (MGS) iteration
	Faulting on the first MGS-iteration (with linear separated eigenvalues) - Inner solver initialized with random values
	Faulting on the last MGS-iteration (with linear separated eigenvalues) - Inner solver initialized with random values

	Testing of all positions of the orthogonalization with single faults
	Faulting on a matrix with low condition number - Inner solver initialized with zero values
	Faulting on a matrix with high condition number - Inner solver initialized with zero values
	Faulting on a matrix with high condition number - Inner solver initialized with zero values
	Faulting on a matrix with very high condition number - Inner solver initialized with zero values
	Faulting on a matrix with very high condition number - Inner solver initialized with zero values

	Testing of all positions of the orthogonalization with multiple faults
	Faulting on a matrix with low condition number along index i - Inner solver initialized with zero values
	Faulting on a matrix with low condition number along index j - Inner solver initialized with zero values
	Faulting on a matrix with high condition number along index i - Inner solver initialized with zero values
	Faulting on a matrix with high condition number along index j - Inner solver initialized with zero values

	Comparison between the 2D Poisson and adder_dcop_63 problem
	Residuum curves of GMRES and F-GMRES for solving the 2D Poisson and adder_dcop_63 problem - Inner solver initialized with zero values
	Residuals and approximation errors for solving the 2D Poisson problem and faulting with error type 1 - Inner solver initialized with with zero values
	Residuals and approximation errors for solving the 2D Poisson problem and faulting with error type 2 - Inner solver initialized with with zero values
	Residuals and approximation errors for solving the adder_dcop_63 problem and faulting with error type 1 - Inner solver initialized with with zero values
	Residuals and approximation errors for solving the adder_dcop_63 problem and faulting with error type 2 - Inner solver initialized with with zero values
	Faulting on the first MGS-iteration during solving the 2D Poisson problem - Inner solver initialized with zero values
	Faulting on the first MGS-iteration during solving the adder_dcop_63 problem - Inner solver initialized with zero values
	Faulting on the Givens rotation during solving the 2D Poisson problem - Inner solver initialized with zero values
	Faulting on the Givens rotation during solving the adder_dcop_63 problem - Inner solver initialized with zero values
	Eigenvalue distribution of the 2D Poisson and adder_dcop _63 matrix

	Faulting while solving the 2D Poisson and adder_dcop_63 problem with and without ILU-preconditioning in the inner solver of the FT-GMRES
	Workload distribution of F-GMRES with ILU-preconditioning (2D Poisson matrix)
	Residuum curves of GMRES and Flexible GMRES for solving the 2D Poisson matrix with/without ILU-preconditioning and different initializations for the inner solver
	Faulting with different kinds of faults and without ILU-preconditioning during solving the 2D Poisson problem - Inner solver initialized with random values
	Faulting with different kinds of faults and without ILU-preconditioning during solving the 2D Poisson problem - Inner solver initialized with zero values
	Faulting with different kinds of faults and ILU-preconditioning during solving the 2D Poisson problem - Inner solver initialized with random values
	Faulting with different kinds of faults and ILU-preconditioning during solving the 2D Poisson problem - Inner solver initialized with zero values
	Faulting with different kinds of faults and without ILU-preconditioning during solving the adder_dcop_63 problem - Inner solver initialized with random values
	Faulting with different kinds of faults and without ILU-preconditioning during solving the adder_dcop_63 problem - Inner solver initialized with zero values
	Faulting with different kinds of faults and ILU-preconditioning during solving the adder_dcop_63 problem - Inner solver initialized with random values
	Faulting with different kinds of faults and ILU-preconditioning during solving the adder_dcop_63 problem - Inner solver initialized with zero values

	Faulting while solving the 2D Poisson and adder_dcop_63 problem with flexible preconditioning by the inner solver of the FT-GMRES
	The absolute change between the current and previous iteration in the inner solver of the F-GMRES - Inner solver initialized with zero values
	The relative change between the first and current iteration in the inner solver of the F-GMRES - Inner solver initialized with zero values
	Adaptive controlling the number of iterations for the inner solver of the F-GMRES (flexible preconditioning) - Inner solver initialized with zero values
	Adaptive controlling the number of iterations for the inner solver of the FT-GMRES (flexible preconditioning) - Inner solver initialized with zero values
	Faulting during solving the 2D Poisson problem with flexible preconditioning by the inner solver - Inner solver initialized with zero values
	Faulting during solving the 2D Poisson problem with flexible preconditioning by the inner solver - Inner solver initialized with zero values
	Number of flops for solving the 2D Poisson problem with flexible preconditioning by the inner solver and faulting - Inner solver initialized with zero values
	Number of flops for solving the 2D Poisson problem with flexible preconditioning by the inner solver and faulting - Inner solver initialized with zero values
	Number of flops for solving the 2D Poisson problem with flexible preconditioning by the inner solver and faulting - Inner solver initialized with zero values
	Faulting during solving the adder_dcop_63 problem with flexible preconditioning by the inner solver - Inner solver initialized with zero values
	Faulting during solving the adder_dcop_63 problem with flexible preconditioning by the inner solver - Inner solver initialized with zero values
	Number of flops for solving the adder_dcop_63 problem with flexible preconditioning by the inner solver and faulting - Inner solver initialized with zero values
	Number of flops for solving the adder_dcop_63 problem with flexible preconditioning by the inner solver and faulting - Inner solver initialized with zero values
	Number of flops for solving the adder_dcop_63 problem with flexible preconditioning by the inner solver and faulting - Inner solver initialized with zero values
	Further experiments for solving the 2D Poisson and adder_dcop_63 problem with flexible preconditioning and faulting - Inner solver initialized with zero values
	Some notes on the flexible preconditioning with/without faulting

	Results of some experiments with the corresponding matrix properties
	Faulting with single faults while solving further problems (symmetric, unsymmetric)
	Faulting during solving the 2D Poisson problem for different kinds of faults - Inner solver initialized with zero values
	Faulting during solving the Pres_Poisson problem for different kinds of faults - Inner solver initialized with zero values
	Faulting during solving the Kuu problem for different kinds of faults - Inner solver initialized with zero values
	Faulting during solving the Na5 problem for different kinds of faults - Inner solver initialized with zero values
	Faulting during solving the adder_dcop_63 problem for different kinds of faults - Inner solver initialized with zero values
	Faulting during solving the circuit_2 problem for different kinds of faults - Inner solver initialized with zero values
	Faulting during solving the mult_dcop_03 problem for different kinds of faults - Inner solver initialized with zero values
	Faulting during solving the chem_master1 problem for different kinds of faults - Inner solver initialized with zero values
	Faulting during solving the ILL_Stokes problem for different kinds of faults - Inner solver initialized with zero values

	Faulting with single faults while solving further preconditioned problems with ILU-factorization (symmetric, un-symmetric)
	Faulting during solving the Pres_Poisson problem for different kinds of faults - Inner solver initialized with zero values
	Faulting during solving the Kuu problem for different kinds of faults - Inner solver initialized with zero values
	Faulting during solving the Na5 problem for different kinds of faults - Inner solver initialized with zero values
	Faulting during solving the circuit_2 problem for different kinds of faults - Inner solver initialized with zero values
	Faulting during solving the chem_master1 problem for different kinds of faults - Inner solver initialized with zero values

	Faulting with single faults while solving further problems with applying flexible preconditioning by the inner solver of the FT-GMRES (symmetric, un-symmetric)
	Number of flops for solving the Pres_Poisson problem with flexible preconditioning by the inner solver and faulting - Inner solver initialized with zero values
	Number of flops for solving the Kuu problem with flexible preconditioning by the inner solver and faulting - Inner solver initialized with zero values
	Number of flops for solving the Na5 problem with flexible preconditioning by the inner solver and faulting - Inner solver initialized with zero values
	Number of flops for solving the circuit_2 problem with flexible preconditioning by the inner solver and faulting - Inner solver initialized with zero values
	Number of flops for solving the mult_dcop_03 problem with flexible preconditioning by the inner solver and faulting - Inner solver initialized with zero values
	Number of flops for solving the chem_master1 problem with flexible preconditioning by the inner solver and faulting - Inner solver initialized with zero values
	Number of flops for solving the Ill_Stokes problem with flexible preconditioning by the inner solver and faulting - Inner solver initialized with zero values

	Faulting with multiple faults while solving further problems (un-symmetric)
	Faulting during solving the circuit_2 problem along index i
	Faulting during solving the circuit_2 problem along index j
	Faulting during solving the mult_dcop_03 problem along index i
	Faulting during solving the mult_dcop_03 problem along index j
	Faulting during solving the ILL_Stokes problem along index i
	Faulting during solving the ILL_Stokes problem along index j

	Different disturbed Hessenberg matrices for single faults
	Introduction
	Different disturbed Hessenberg matrices for solving the 2D Poisson problem
	Different disturbed Hessenberg matrices for solving the Pres_Poisson problem
	Different disturbed Hessenberg matrices for solving the Kuu problem
	Different disturbed Hessenberg matrices for solving the adder_dcop_63 problem
	Different Hessenberg matrices for solving the adder_dcop_63 problem (no faulting)
	Different disturbed Hessenberg matrices for solving the circuit_2 problem
	Different disturbed Hessenberg matrices for solving the mult_dcop_03 problem
	Different disturbed Hessenberg matrices for solving the chem_master1 problem
	Sensibility of banded matrices in the presence of a fault (2D Poisson)
	Sensibility of banded matrices in the presence of a fault (2D Poisson)

	Improvements and recommendations for Fault Tolerant GMRES (FT-GMRES)
	Introduction
	Faulting without any improvements on a diagonal matrix with high condition number - Inner solver initialized with zero values
	Faulting on a diagonal matrix with high condition number and using the norm - Inner solver initialized with zero values
	Faulting on a diagonal matrix with high condition number and using the relative change - Inner solver initialized with zero values

	Fault detection through the relative change between two residuals
	Introduction
	Computation of the relative change during solving the 2D Poisson problem - Inner solver initialized with random values
	Computation of the relative change during solving the 2D Poisson problem - Inner solver initialized with zero values
	Computation of all relative changes during solving the 2D Poisson problem - Inner solver initialized with random and zero values
	Computation of the relative change during solving the adder_dcop_63 problem - Inner solver initialized with random values
	Computation of the relative change during solving the adder_dcop_63 problem - Inner solver initialized with zero values
	Computation of all relative changes during solving the adder_dcop_63 problem - Inner solver initialized with random and zero values
	Approximation errors with and without correcting stagnating convergence for solving the 2D Poisson problem (error type 1) - Inner solver initialized with zero values
	Approximation errors with and without correcting stagnating convergence for solving the 2D Poisson problem (error type 2) - Inner solver initialized with zero values
	Fault detection during solving the 2D Poisson problem with different values for the relative change - Inner solver initialized with zero values
	Some notes on the parameters for fault detection in the case of the FT-GMRES

	Fault detection through checking the structure of the Hessenberg matrix
	Introduction
	Absolute lowest value of the Hessenberg matrix in the inner solver of the F-GMRES for solving different problems - Inner solver initialized with zero values
	Absolute largest value of the Hessenberg matrix in the inner solver of the F-GMRES for solving different problems - Inner solver initialized with zero values
	Fault detection during solving the 2D Poisson problem with checking the structure of the Hessenberg matrix - Inner solver initialized with zero values
	Fault detection during solving the Pres_Poisson problem with checking the structure of the Hessenberg matrix - Inner solver initialized with zero values
	Fault detection during solving the Kuu problem with checking the structure of the Hessenberg matrix - Inner solver initialized with zero values
	Fault detection during solving the Na5 problem with checking the structure of the Hessenberg matrix - Inner solver initialized with zero values
	Fault detection during solving the adder_dcop_63 problem with checking the structure of the Hessenberg matrix - Inner solver initialized with zero values
	Fault detection during solving the circuit_ 2 problem with checking the structure of the Hessenberg matrix - Inner solver initialized with zero values
	Fault detection during solving the mult_dcop_03 problem with checking the structure of the Hessenberg matrix - Inner solver initialized with zero values
	Fault detection during solving the chem_master1 problem with checking the structure of the Hessenberg matrix - Inner solver initialized with zero values
	Fault detection during solving the ILL_Stokes problem with checking the structure of the Hessenberg matrix - Inner solver initialized with zero values

	The Extended Fault Tolerant GMRES (EFT-GMRES) method (Pseudo Code)

	Conclusions and final results
	Parameters
	Appendix
	Formulas for computing the number of flops for (F-)GMRES and (F-)CG (Matlab)
	Preconditioned GMRES algorithm
	Faulting with FT-GMRES while solving the 2D Poisson matrix
	Inner solver initialized with the previous computed basis vector
	Inner solver initialized with random values
	Residuum curves for solving the 2D Poisson matrix

	Abstract (German - short version)

